Sulphide Globules in a Porcellanite–Buchite Composite Xenolith from Stromboli Volcano (Aeolian Islands, Southern Italy): Products of Open-System Igneous Pyrometamorphism
Pyrometamorphism is the highest temperature end-member of the sanidinite facies (high-temperature, low-pressure contact metamorphism) and comprises both subsolidus and partial melting reactions which may locally lead to cryptocrystalline-glassy rocks (i.e., porcellanites and buchites). A wide range...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Minerals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-163X/11/6/639 |
id |
doaj-118a19f230724dc59c8cd8b921803041 |
---|---|
record_format |
Article |
spelling |
doaj-118a19f230724dc59c8cd8b9218030412021-07-01T00:21:27ZengMDPI AGMinerals2075-163X2021-06-011163963910.3390/min11060639Sulphide Globules in a Porcellanite–Buchite Composite Xenolith from Stromboli Volcano (Aeolian Islands, Southern Italy): Products of Open-System Igneous PyrometamorphismAlberto Renzulli0Marco Taussi1Frank J. Brink2Stefano Del Moro3Richard W. Henley4Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, ItalyDipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, ItalyCentre for Advanced Microscopy, The Australian National University, Acton, ACT 0200, AustraliaGeo.In.Tech. srl, Spin Off—Università degli Studi di Urbino Carlo Bo, 61029 Urbino, ItalyARC Training Centre for M3D Innovation, Research School of Physics, The Australian National University, Acton, ACT 0200, AustraliaPyrometamorphism is the highest temperature end-member of the sanidinite facies (high-temperature, low-pressure contact metamorphism) and comprises both subsolidus and partial melting reactions which may locally lead to cryptocrystalline-glassy rocks (i.e., porcellanites and buchites). A wide range of pyrometamorphic ejecta, with different protoliths from Stromboli volcano, have been investigated over the last two decades. Among these, a heterogeneous (composite) glassy sample (B1) containing intimately mingled porcellanite and buchite lithotypes was selected to be studied through new FESEM–EDX and QEMSCAN™ mineral mapping investigations, coupled with the already available bulk rock composition data. This xenolith was chosen because of the unique and intriguing presence of abundant Cu–Fe sulphide globules within the buchite glass in contrast with the well-known general absence of sulphides in Stromboli basalts or their subvolcanic counterparts (dolerites) due to the oxygen fugacity of NNO + 0.5–NNO + 1 (or slightly lower) during magma crystallization. The investigated sample was ejected during the Stromboli paroxysm of 5 April 2003 when low porphyritic (LP) and high porphyritic (HP) basalts were erupted together. Both types of magmas are present as coatings of the porcellanite–buchite sample and were responsible for the last syn-eruptive xenoliths’s rim made of a thin crystalline-glassy selvage. The complex petrogenetic history of the B1 pyrometamorphic xenolith is tentatively explained in the framework of the shallow subvolcanic processes and vent system dynamics occurred shortly before (January–March 2003) the 5 April 2003 paroxysm. A multistep petrogenesis is proposed to account for the unique occurrence of sulphide globules in this composite pyrometamorphic xenolith. The initial stage is the pyrometamorphism of an already hydrothermally leached extrusive/subvolcanic vent system wall rock within the shallow volcano edifice. Successively, fragments of this wall rock were subject to further heating by continuous gas flux and interaction with Stromboli HP basalt at temperatures above 1000 °C to partially melt the xenolith. This is an open system process involving continuous exchange of volatile components between the gas flux and the evolving silicate melt. It is suggested that the reaction of plagioclase and ferromagnesian phenocrysts with SO<sub>2</sub> and HCl from the volcanic gas during diffusion into the melt led to the formation of molecular CaCl in the melt, which then was released to the general gas flux. Sulphide formation is the consequence of the reaction of HCl dissolved into the melt from the gas phase, resulting in the release of H<sub>2</sub> into the melt and lowering of <i>f</i><sub>O2</sub> driving reduction of the dissolved SO<sub>2</sub>.https://www.mdpi.com/2075-163X/11/6/639igneous pyrometamorphismgas–solid reactionsbuchiteporcellanitehydrothermally-altered volcanicssulphide |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alberto Renzulli Marco Taussi Frank J. Brink Stefano Del Moro Richard W. Henley |
spellingShingle |
Alberto Renzulli Marco Taussi Frank J. Brink Stefano Del Moro Richard W. Henley Sulphide Globules in a Porcellanite–Buchite Composite Xenolith from Stromboli Volcano (Aeolian Islands, Southern Italy): Products of Open-System Igneous Pyrometamorphism Minerals igneous pyrometamorphism gas–solid reactions buchite porcellanite hydrothermally-altered volcanics sulphide |
author_facet |
Alberto Renzulli Marco Taussi Frank J. Brink Stefano Del Moro Richard W. Henley |
author_sort |
Alberto Renzulli |
title |
Sulphide Globules in a Porcellanite–Buchite Composite Xenolith from Stromboli Volcano (Aeolian Islands, Southern Italy): Products of Open-System Igneous Pyrometamorphism |
title_short |
Sulphide Globules in a Porcellanite–Buchite Composite Xenolith from Stromboli Volcano (Aeolian Islands, Southern Italy): Products of Open-System Igneous Pyrometamorphism |
title_full |
Sulphide Globules in a Porcellanite–Buchite Composite Xenolith from Stromboli Volcano (Aeolian Islands, Southern Italy): Products of Open-System Igneous Pyrometamorphism |
title_fullStr |
Sulphide Globules in a Porcellanite–Buchite Composite Xenolith from Stromboli Volcano (Aeolian Islands, Southern Italy): Products of Open-System Igneous Pyrometamorphism |
title_full_unstemmed |
Sulphide Globules in a Porcellanite–Buchite Composite Xenolith from Stromboli Volcano (Aeolian Islands, Southern Italy): Products of Open-System Igneous Pyrometamorphism |
title_sort |
sulphide globules in a porcellanite–buchite composite xenolith from stromboli volcano (aeolian islands, southern italy): products of open-system igneous pyrometamorphism |
publisher |
MDPI AG |
series |
Minerals |
issn |
2075-163X |
publishDate |
2021-06-01 |
description |
Pyrometamorphism is the highest temperature end-member of the sanidinite facies (high-temperature, low-pressure contact metamorphism) and comprises both subsolidus and partial melting reactions which may locally lead to cryptocrystalline-glassy rocks (i.e., porcellanites and buchites). A wide range of pyrometamorphic ejecta, with different protoliths from Stromboli volcano, have been investigated over the last two decades. Among these, a heterogeneous (composite) glassy sample (B1) containing intimately mingled porcellanite and buchite lithotypes was selected to be studied through new FESEM–EDX and QEMSCAN™ mineral mapping investigations, coupled with the already available bulk rock composition data. This xenolith was chosen because of the unique and intriguing presence of abundant Cu–Fe sulphide globules within the buchite glass in contrast with the well-known general absence of sulphides in Stromboli basalts or their subvolcanic counterparts (dolerites) due to the oxygen fugacity of NNO + 0.5–NNO + 1 (or slightly lower) during magma crystallization. The investigated sample was ejected during the Stromboli paroxysm of 5 April 2003 when low porphyritic (LP) and high porphyritic (HP) basalts were erupted together. Both types of magmas are present as coatings of the porcellanite–buchite sample and were responsible for the last syn-eruptive xenoliths’s rim made of a thin crystalline-glassy selvage. The complex petrogenetic history of the B1 pyrometamorphic xenolith is tentatively explained in the framework of the shallow subvolcanic processes and vent system dynamics occurred shortly before (January–March 2003) the 5 April 2003 paroxysm. A multistep petrogenesis is proposed to account for the unique occurrence of sulphide globules in this composite pyrometamorphic xenolith. The initial stage is the pyrometamorphism of an already hydrothermally leached extrusive/subvolcanic vent system wall rock within the shallow volcano edifice. Successively, fragments of this wall rock were subject to further heating by continuous gas flux and interaction with Stromboli HP basalt at temperatures above 1000 °C to partially melt the xenolith. This is an open system process involving continuous exchange of volatile components between the gas flux and the evolving silicate melt. It is suggested that the reaction of plagioclase and ferromagnesian phenocrysts with SO<sub>2</sub> and HCl from the volcanic gas during diffusion into the melt led to the formation of molecular CaCl in the melt, which then was released to the general gas flux. Sulphide formation is the consequence of the reaction of HCl dissolved into the melt from the gas phase, resulting in the release of H<sub>2</sub> into the melt and lowering of <i>f</i><sub>O2</sub> driving reduction of the dissolved SO<sub>2</sub>. |
topic |
igneous pyrometamorphism gas–solid reactions buchite porcellanite hydrothermally-altered volcanics sulphide |
url |
https://www.mdpi.com/2075-163X/11/6/639 |
work_keys_str_mv |
AT albertorenzulli sulphideglobulesinaporcellanitebuchitecompositexenolithfromstrombolivolcanoaeolianislandssouthernitalyproductsofopensystemigneouspyrometamorphism AT marcotaussi sulphideglobulesinaporcellanitebuchitecompositexenolithfromstrombolivolcanoaeolianislandssouthernitalyproductsofopensystemigneouspyrometamorphism AT frankjbrink sulphideglobulesinaporcellanitebuchitecompositexenolithfromstrombolivolcanoaeolianislandssouthernitalyproductsofopensystemigneouspyrometamorphism AT stefanodelmoro sulphideglobulesinaporcellanitebuchitecompositexenolithfromstrombolivolcanoaeolianislandssouthernitalyproductsofopensystemigneouspyrometamorphism AT richardwhenley sulphideglobulesinaporcellanitebuchitecompositexenolithfromstrombolivolcanoaeolianislandssouthernitalyproductsofopensystemigneouspyrometamorphism |
_version_ |
1721348815631417344 |