On the parameters of two-intersection sets in PG(3, q)
In this paper we study the behaviour of the admissible parameters of a two-intersection set in the finite three-dimensional projective space of order q=p^h a prime power. We show that all these parameters are congruent to the same integer modulo a power of p. Furthermore, when the difference of the...
Main Authors: | Stefano Innamorati, Fulvio Zuanni |
---|---|
Format: | Article |
Language: | English |
Published: |
Accademia Peloritana dei Pericolanti
2018-11-01
|
Series: | Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
Online Access: |
http://dx.doi.org/10.1478/AAPP.96S2A7
|
Similar Items
-
On sets of class [1, q + 1, 2q + 1]_2 in PG(3, q)
by: Stefano Innamorati, et al.
Published: (2018-11-01) -
The Shape of the (15,3)-Arc of PG(2,7)
by: Stefano Innamorati, et al.
Published: (2021-02-01) -
Sui blocking set irriducibili dualmente contenuti in un k-arco
by: Fulvio Zuanni
Published: (1993-05-01) -
A new characterization of elliptic quadrics in PG(3, q), q odd
by: Vito Napolitano
Published: (2018-11-01) -
Incomplete (rq-q+r- ɛ , r)-arcs and minimal {ℓ,t}-Blocking set in PG(2,q)
by: Nada Yahya, et al.
Published: (2014-07-01)