On the parameters of two-intersection sets in PG(3, q)

In this paper we study the behaviour of the admissible parameters of a two-intersection set in the finite three-dimensional projective space of order q=p^h a prime power. We show that all these parameters are congruent to the same integer modulo a power of p. Furthermore, when the difference of the...

Full description

Bibliographic Details
Main Authors: Stefano Innamorati, Fulvio Zuanni
Format: Article
Language:English
Published: Accademia Peloritana dei Pericolanti 2018-11-01
Series:Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
Online Access: http://dx.doi.org/10.1478/AAPP.96S2A7
id doaj-117fc2e199b643489a40d335e56c63c9
record_format Article
spelling doaj-117fc2e199b643489a40d335e56c63c92020-11-24T20:52:52ZengAccademia Peloritana dei PericolantiAtti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali0365-03591825-12422018-11-0196S2A710.1478/AAPP.96S2A7AAPP.96S2A7On the parameters of two-intersection sets in PG(3, q)Stefano InnamoratiFulvio ZuanniIn this paper we study the behaviour of the admissible parameters of a two-intersection set in the finite three-dimensional projective space of order q=p^h a prime power. We show that all these parameters are congruent to the same integer modulo a power of p. Furthermore, when the difference of the intersection numbers is greater than the order of the underlying geometry, such integer is either 0 or 1 modulo a power of p. A useful connection between the intersection numbers of lines and planes is provided. We also improve some known bounds for the cardinality of the set. Finally, as a by-product, we prove two recent conjectures due to Durante, Napolitano and Olanda. http://dx.doi.org/10.1478/AAPP.96S2A7
collection DOAJ
language English
format Article
sources DOAJ
author Stefano Innamorati
Fulvio Zuanni
spellingShingle Stefano Innamorati
Fulvio Zuanni
On the parameters of two-intersection sets in PG(3, q)
Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
author_facet Stefano Innamorati
Fulvio Zuanni
author_sort Stefano Innamorati
title On the parameters of two-intersection sets in PG(3, q)
title_short On the parameters of two-intersection sets in PG(3, q)
title_full On the parameters of two-intersection sets in PG(3, q)
title_fullStr On the parameters of two-intersection sets in PG(3, q)
title_full_unstemmed On the parameters of two-intersection sets in PG(3, q)
title_sort on the parameters of two-intersection sets in pg(3, q)
publisher Accademia Peloritana dei Pericolanti
series Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
issn 0365-0359
1825-1242
publishDate 2018-11-01
description In this paper we study the behaviour of the admissible parameters of a two-intersection set in the finite three-dimensional projective space of order q=p^h a prime power. We show that all these parameters are congruent to the same integer modulo a power of p. Furthermore, when the difference of the intersection numbers is greater than the order of the underlying geometry, such integer is either 0 or 1 modulo a power of p. A useful connection between the intersection numbers of lines and planes is provided. We also improve some known bounds for the cardinality of the set. Finally, as a by-product, we prove two recent conjectures due to Durante, Napolitano and Olanda.
url http://dx.doi.org/10.1478/AAPP.96S2A7
work_keys_str_mv AT stefanoinnamorati ontheparametersoftwointersectionsetsinpg3q
AT fulviozuanni ontheparametersoftwointersectionsetsinpg3q
_version_ 1716798722678980608