On the parameters of two-intersection sets in PG(3, q)
In this paper we study the behaviour of the admissible parameters of a two-intersection set in the finite three-dimensional projective space of order q=p^h a prime power. We show that all these parameters are congruent to the same integer modulo a power of p. Furthermore, when the difference of the...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Accademia Peloritana dei Pericolanti
2018-11-01
|
Series: | Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
Online Access: |
http://dx.doi.org/10.1478/AAPP.96S2A7
|
id |
doaj-117fc2e199b643489a40d335e56c63c9 |
---|---|
record_format |
Article |
spelling |
doaj-117fc2e199b643489a40d335e56c63c92020-11-24T20:52:52ZengAccademia Peloritana dei PericolantiAtti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali0365-03591825-12422018-11-0196S2A710.1478/AAPP.96S2A7AAPP.96S2A7On the parameters of two-intersection sets in PG(3, q)Stefano InnamoratiFulvio ZuanniIn this paper we study the behaviour of the admissible parameters of a two-intersection set in the finite three-dimensional projective space of order q=p^h a prime power. We show that all these parameters are congruent to the same integer modulo a power of p. Furthermore, when the difference of the intersection numbers is greater than the order of the underlying geometry, such integer is either 0 or 1 modulo a power of p. A useful connection between the intersection numbers of lines and planes is provided. We also improve some known bounds for the cardinality of the set. Finally, as a by-product, we prove two recent conjectures due to Durante, Napolitano and Olanda. http://dx.doi.org/10.1478/AAPP.96S2A7 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stefano Innamorati Fulvio Zuanni |
spellingShingle |
Stefano Innamorati Fulvio Zuanni On the parameters of two-intersection sets in PG(3, q) Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
author_facet |
Stefano Innamorati Fulvio Zuanni |
author_sort |
Stefano Innamorati |
title |
On the parameters of two-intersection sets in PG(3, q) |
title_short |
On the parameters of two-intersection sets in PG(3, q) |
title_full |
On the parameters of two-intersection sets in PG(3, q) |
title_fullStr |
On the parameters of two-intersection sets in PG(3, q) |
title_full_unstemmed |
On the parameters of two-intersection sets in PG(3, q) |
title_sort |
on the parameters of two-intersection sets in pg(3, q) |
publisher |
Accademia Peloritana dei Pericolanti |
series |
Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali |
issn |
0365-0359 1825-1242 |
publishDate |
2018-11-01 |
description |
In this paper we study the behaviour of the admissible parameters of a two-intersection set in the finite three-dimensional projective space of order q=p^h a prime power. We show that all these parameters are congruent to the same integer modulo a power of p. Furthermore, when the difference of the intersection numbers is greater than the order of the underlying geometry, such integer is either 0 or 1 modulo a power of p. A useful connection between the intersection numbers of lines and planes is provided. We also improve some known bounds for the cardinality of the set. Finally, as a by-product, we prove two recent conjectures due to Durante, Napolitano and Olanda. |
url |
http://dx.doi.org/10.1478/AAPP.96S2A7
|
work_keys_str_mv |
AT stefanoinnamorati ontheparametersoftwointersectionsetsinpg3q AT fulviozuanni ontheparametersoftwointersectionsetsinpg3q |
_version_ |
1716798722678980608 |