Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative
In this paper we introduce a new subclass of the bi-univalent functions defined in the open unit disc and connected with a <i>q</i>-analogue derivative. We find estimates for the first two Taylor-Maclaurin coefficients <inline-formula> <math display="inline"> <se...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/3/418 |
Summary: | In this paper we introduce a new subclass of the bi-univalent functions defined in the open unit disc and connected with a <i>q</i>-analogue derivative. We find estimates for the first two Taylor-Maclaurin coefficients <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="|" close="|"> <msub> <mi>a</mi> <mn>2</mn> </msub> </mfenced> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="|" close="|"> <msub> <mi>a</mi> <mn>3</mn> </msub> </mfenced> </semantics> </math> </inline-formula> for functions in this subclass, and we obtain an estimation for the Fekete-Szegő problem for this function class. |
---|---|
ISSN: | 2227-7390 |