Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks

This paper evaluates the forecasting performance of two nonlinear models, k-nearest neighbor (kNN) and feed-forward neural networks (FFNN), using stream flow data of the Kızılırmak River, the longest river in Turkey. For the kNN model, the required parameters are delay time, number of nearest neigh-...

Full description

Bibliographic Details
Main Author: Hakan Tongal
Format: Article
Language:English
Published: Universidad Nacional de Colombia 2013-07-01
Series:Earth Sciences Research Journal
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/esrj/article/view/37073
id doaj-116d557f9f434f23ac074d1a779a10e8
record_format Article
spelling doaj-116d557f9f434f23ac074d1a779a10e82020-11-25T00:37:50ZengUniversidad Nacional de ColombiaEarth Sciences Research Journal1794-61902339-34592013-07-0117235890Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networksHakan Tongal0Engineering Faculty, Civil Engineering Department, Süleyman Demirel UniversityThis paper evaluates the forecasting performance of two nonlinear models, k-nearest neighbor (kNN) and feed-forward neural networks (FFNN), using stream flow data of the Kızılırmak River, the longest river in Turkey. For the kNN model, the required parameters are delay time, number of nearest neigh- bors and embedding dimension. The optimal delay time was obtained with the mutual information function; the number of nearest neighbors was obtained with the optimization process that minimi- zes RMSE as a function of the neighbor number and the embedding dimension was obtained with the correlation dimension method. The correlation dimension of the Kızılırmak River was d = 2.702, which was used in forming the input structure of the FFNN. The nearest integer above the correlation dimension (i.e., 3) provided the minimal number of required variables to characterize the system, and the maximum number of required variables was obtained with the nearest integer above the value 2d + 1 (Takens, 1981) (i.e., 7). Two FFNN models were developed that incorporate 3 and 7 lagged discharge values and the predicted performance compared to that of the kNN model. The results showed that the kNN model was superior to the FFNN model in stream flow forecasting. However, as a result from the kNN model structure, the model failed in the prediction of peak values. Additionally, it was found that the correlation dimension (if it existed) could successfully be used in time series where the determina- tion of the input structure is difficult because of high inter-dependency, as in stream flow time series.  Resumen Este trabajo evalúa el desempeño de pronóstico de dos modelos no lineares, de método de clasificación no paramétrico kNN y de redes neuronales con alimentación avanzada (FNNN), usando datos de flujo del río Kizilirmak, el mayor de Turquía. Para el modelo kNN, los parámetros requeridos son tiempo de retraso, número de vecindarios cercanos y dimensión de encrustamiento. El tiempo óptimo de retraso fue obtenido con la función de información mutua; el número de vecindarios cercanos fue obtenido con la optimización de procesos que minimizan el RMSE como una función del número de vecindarios y la dimensión de incrus- tación fue obtenida con el método de dimensión correlativa. La dimensión de correlación del río Kizilirmak fue utilizado en la formación de la estructura de ingreso de las redes FFNN. La integración cercana sobre la dimensión de correlación proveyó el número mínimo de variables requeridas para caracterizar el sistema y el número máximo de variables requeridas fue obtenido con el número entero por encima del valor (Takens, 1981). Se desarrollaron dos modelos de redes FNNN que incorporan 3 y 7 valores de descargas retrasadas y el desempeño de predicción comparado con el modelo kNN. Los resultados muestran que el modelo kNN fue superior al modelo de redes FFNN en el flujo de pronósticos. Sin embargo, como un resultado del modelo de estructura kNN, el modelo falla en los valores pico. Adicionalmente, se encontró que la dimensión de correla- ción (de existir) podría ser usada eficientemente en series temporales donde la determinación de estructura de ingreso es difícil por la gran interdependencia, como en las series temporales de flujo.https://revistas.unal.edu.co/index.php/esrj/article/view/37073Kızılırmakk-nearest neighborand feed-forward neural networksmutual information functioncorrelation dimension
collection DOAJ
language English
format Article
sources DOAJ
author Hakan Tongal
spellingShingle Hakan Tongal
Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
Earth Sciences Research Journal
Kızılırmak
k-nearest neighbor
and feed-forward neural networks
mutual information function
correlation dimension
author_facet Hakan Tongal
author_sort Hakan Tongal
title Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
title_short Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
title_full Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
title_fullStr Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
title_full_unstemmed Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
title_sort nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
publisher Universidad Nacional de Colombia
series Earth Sciences Research Journal
issn 1794-6190
2339-3459
publishDate 2013-07-01
description This paper evaluates the forecasting performance of two nonlinear models, k-nearest neighbor (kNN) and feed-forward neural networks (FFNN), using stream flow data of the Kızılırmak River, the longest river in Turkey. For the kNN model, the required parameters are delay time, number of nearest neigh- bors and embedding dimension. The optimal delay time was obtained with the mutual information function; the number of nearest neighbors was obtained with the optimization process that minimi- zes RMSE as a function of the neighbor number and the embedding dimension was obtained with the correlation dimension method. The correlation dimension of the Kızılırmak River was d = 2.702, which was used in forming the input structure of the FFNN. The nearest integer above the correlation dimension (i.e., 3) provided the minimal number of required variables to characterize the system, and the maximum number of required variables was obtained with the nearest integer above the value 2d + 1 (Takens, 1981) (i.e., 7). Two FFNN models were developed that incorporate 3 and 7 lagged discharge values and the predicted performance compared to that of the kNN model. The results showed that the kNN model was superior to the FFNN model in stream flow forecasting. However, as a result from the kNN model structure, the model failed in the prediction of peak values. Additionally, it was found that the correlation dimension (if it existed) could successfully be used in time series where the determina- tion of the input structure is difficult because of high inter-dependency, as in stream flow time series.  Resumen Este trabajo evalúa el desempeño de pronóstico de dos modelos no lineares, de método de clasificación no paramétrico kNN y de redes neuronales con alimentación avanzada (FNNN), usando datos de flujo del río Kizilirmak, el mayor de Turquía. Para el modelo kNN, los parámetros requeridos son tiempo de retraso, número de vecindarios cercanos y dimensión de encrustamiento. El tiempo óptimo de retraso fue obtenido con la función de información mutua; el número de vecindarios cercanos fue obtenido con la optimización de procesos que minimizan el RMSE como una función del número de vecindarios y la dimensión de incrus- tación fue obtenida con el método de dimensión correlativa. La dimensión de correlación del río Kizilirmak fue utilizado en la formación de la estructura de ingreso de las redes FFNN. La integración cercana sobre la dimensión de correlación proveyó el número mínimo de variables requeridas para caracterizar el sistema y el número máximo de variables requeridas fue obtenido con el número entero por encima del valor (Takens, 1981). Se desarrollaron dos modelos de redes FNNN que incorporan 3 y 7 valores de descargas retrasadas y el desempeño de predicción comparado con el modelo kNN. Los resultados muestran que el modelo kNN fue superior al modelo de redes FFNN en el flujo de pronósticos. Sin embargo, como un resultado del modelo de estructura kNN, el modelo falla en los valores pico. Adicionalmente, se encontró que la dimensión de correla- ción (de existir) podría ser usada eficientemente en series temporales donde la determinación de estructura de ingreso es difícil por la gran interdependencia, como en las series temporales de flujo.
topic Kızılırmak
k-nearest neighbor
and feed-forward neural networks
mutual information function
correlation dimension
url https://revistas.unal.edu.co/index.php/esrj/article/view/37073
work_keys_str_mv AT hakantongal nonlinearforecastingofstreamflowsusingachaoticapproachandartificialneuralnetworks
_version_ 1725299432455405568