An electrophysiological biomarker for the classification of cataract-reversal patients: A case-control study

Background: Untreated congenital blindness through cataracts leads to lasting visual brain system changes, including substantial alterations of extrastriate visual areas. Consequently, late-treated individuals (> 5 months of age) with dense congenital bilateral cataracts (CC) exhibit poorer visua...

Full description

Bibliographic Details
Main Authors: Suddha Sourav, Davide Bottari, Idris Shareef, Ramesh Kekunnaya, Brigitte Röder
Format: Article
Language:English
Published: Elsevier 2020-10-01
Series:EClinicalMedicine
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589537020303035
id doaj-116218252a5341c3854960934e51d719
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Suddha Sourav
Davide Bottari
Idris Shareef
Ramesh Kekunnaya
Brigitte Röder
spellingShingle Suddha Sourav
Davide Bottari
Idris Shareef
Ramesh Kekunnaya
Brigitte Röder
An electrophysiological biomarker for the classification of cataract-reversal patients: A case-control study
EClinicalMedicine
Congenital cataract
Cataract
Sight recovery
Biomarker
Visual deprivation
Extrastriate processing
author_facet Suddha Sourav
Davide Bottari
Idris Shareef
Ramesh Kekunnaya
Brigitte Röder
author_sort Suddha Sourav
title An electrophysiological biomarker for the classification of cataract-reversal patients: A case-control study
title_short An electrophysiological biomarker for the classification of cataract-reversal patients: A case-control study
title_full An electrophysiological biomarker for the classification of cataract-reversal patients: A case-control study
title_fullStr An electrophysiological biomarker for the classification of cataract-reversal patients: A case-control study
title_full_unstemmed An electrophysiological biomarker for the classification of cataract-reversal patients: A case-control study
title_sort electrophysiological biomarker for the classification of cataract-reversal patients: a case-control study
publisher Elsevier
series EClinicalMedicine
issn 2589-5370
publishDate 2020-10-01
description Background: Untreated congenital blindness through cataracts leads to lasting visual brain system changes, including substantial alterations of extrastriate visual areas. Consequently, late-treated individuals (> 5 months of age) with dense congenital bilateral cataracts (CC) exhibit poorer visual function recovery compared to individuals with bilateral developmental cataracts (DC). Reliable methods to differentiate between patients with congenital and developmental cataracts are often lacking, impeding efficient rehabilitation management and introducing confounds in clinical and basic research on recovery prognosis and optimal timing of surgery. A persistent reduction of the P1 wave of visual event-related potentials (VERPs), associated with extrastriate visual cortical activity, has been reported in CC but not in DC individuals. Using two experiments, this study developed and validated P1-based biomarkers for diagnosing a history of congenital blindness in cataract-reversal individuals. Methods: Congenital and developmental cataract-reversal individuals as well as typically sighted matched controls took part in a first experiment used for exploring an electrophysiological biomarker (NCC = 13, NDC = 13, NControl = 26). Circular stimuli containing gratings were presented in one of the visual field quadrants while visual event-related potentials (VERPs) were recorded. Two biomarkers were derived from the P1 wave of the VERP: (1) The mean of the normalized P1 amplitude at posterior electrodes, and (2) a classifier obtained from a linear support vector machine (SVM). A second experiment with partially new CC/DC individuals and their matched controls (NCC = 14, NDC = 15, NControl = 29) was consecutively used to validate the classification based on both biomarkers. Performance of the classifiers were evaluated using receiver operating characteristic (ROC) curve analyses. All cataract-reversal individuals were tested after at least one year of vision recovery. Findings: The normalized P1 amplitude over posterior electrodes allowed a successful classification of the CC from the DC individuals and typically sighted controls (area under ROC curve, AUC = 0.803 and 0.929 for the normalized P1 amplitude and the SVM-based biomarker, respectively). The validation for both biomarkers in experiment 2 again resulted in a high classification success (AUC = 0.800 and 0.883, respectively for the normalized P1 amplitude and the SVM-based biomarker). In the most conservative scenario involving classification of CC from DC individuals in a group of only cataract-reversal individuals, excluding typically sighted controls, the SVM-based biomarker was found to be superior to the mean P1 amplitude based biomarker (AUC = 0.852 compared to 0.757 for the mean P1 based biomarker in validation). Minimum specificity obtained was 80% across all biomarkers. Interpretation: A persistent reduction of the P1 wave provides a highly specific method for classifying cataract patients post-surgically as having suffered from bilateral congenital vs. bilateral developmental cataracts. We suggest that using the P1 based non-invasive electrophysiological biomarker will augment existing clinical classification criteria for individuals with a history of bilateral congenital cataracts, aiding clinical and basic research, recovery prognosis, and rehabilitation efforts. Funding: German Research Foundation (DFG) and the European Research Council (ERC).
topic Congenital cataract
Cataract
Sight recovery
Biomarker
Visual deprivation
Extrastriate processing
url http://www.sciencedirect.com/science/article/pii/S2589537020303035
work_keys_str_mv AT suddhasourav anelectrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
AT davidebottari anelectrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
AT idrisshareef anelectrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
AT rameshkekunnaya anelectrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
AT brigitteroder anelectrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
AT suddhasourav electrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
AT davidebottari electrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
AT idrisshareef electrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
AT rameshkekunnaya electrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
AT brigitteroder electrophysiologicalbiomarkerfortheclassificationofcataractreversalpatientsacasecontrolstudy
_version_ 1724548830257479680
spelling doaj-116218252a5341c3854960934e51d7192020-11-25T03:36:40ZengElsevierEClinicalMedicine2589-53702020-10-0127100559An electrophysiological biomarker for the classification of cataract-reversal patients: A case-control studySuddha Sourav0Davide Bottari1Idris Shareef2Ramesh Kekunnaya3Brigitte Röder4Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany; Corresponding author.Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany; IMT School for Advanced Studies Lucca, Lucca, ItalyJasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, IndiaJasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, IndiaBiological Psychology and Neuropsychology, University of Hamburg, Hamburg, GermanyBackground: Untreated congenital blindness through cataracts leads to lasting visual brain system changes, including substantial alterations of extrastriate visual areas. Consequently, late-treated individuals (> 5 months of age) with dense congenital bilateral cataracts (CC) exhibit poorer visual function recovery compared to individuals with bilateral developmental cataracts (DC). Reliable methods to differentiate between patients with congenital and developmental cataracts are often lacking, impeding efficient rehabilitation management and introducing confounds in clinical and basic research on recovery prognosis and optimal timing of surgery. A persistent reduction of the P1 wave of visual event-related potentials (VERPs), associated with extrastriate visual cortical activity, has been reported in CC but not in DC individuals. Using two experiments, this study developed and validated P1-based biomarkers for diagnosing a history of congenital blindness in cataract-reversal individuals. Methods: Congenital and developmental cataract-reversal individuals as well as typically sighted matched controls took part in a first experiment used for exploring an electrophysiological biomarker (NCC = 13, NDC = 13, NControl = 26). Circular stimuli containing gratings were presented in one of the visual field quadrants while visual event-related potentials (VERPs) were recorded. Two biomarkers were derived from the P1 wave of the VERP: (1) The mean of the normalized P1 amplitude at posterior electrodes, and (2) a classifier obtained from a linear support vector machine (SVM). A second experiment with partially new CC/DC individuals and their matched controls (NCC = 14, NDC = 15, NControl = 29) was consecutively used to validate the classification based on both biomarkers. Performance of the classifiers were evaluated using receiver operating characteristic (ROC) curve analyses. All cataract-reversal individuals were tested after at least one year of vision recovery. Findings: The normalized P1 amplitude over posterior electrodes allowed a successful classification of the CC from the DC individuals and typically sighted controls (area under ROC curve, AUC = 0.803 and 0.929 for the normalized P1 amplitude and the SVM-based biomarker, respectively). The validation for both biomarkers in experiment 2 again resulted in a high classification success (AUC = 0.800 and 0.883, respectively for the normalized P1 amplitude and the SVM-based biomarker). In the most conservative scenario involving classification of CC from DC individuals in a group of only cataract-reversal individuals, excluding typically sighted controls, the SVM-based biomarker was found to be superior to the mean P1 amplitude based biomarker (AUC = 0.852 compared to 0.757 for the mean P1 based biomarker in validation). Minimum specificity obtained was 80% across all biomarkers. Interpretation: A persistent reduction of the P1 wave provides a highly specific method for classifying cataract patients post-surgically as having suffered from bilateral congenital vs. bilateral developmental cataracts. We suggest that using the P1 based non-invasive electrophysiological biomarker will augment existing clinical classification criteria for individuals with a history of bilateral congenital cataracts, aiding clinical and basic research, recovery prognosis, and rehabilitation efforts. Funding: German Research Foundation (DFG) and the European Research Council (ERC).http://www.sciencedirect.com/science/article/pii/S2589537020303035Congenital cataractCataractSight recoveryBiomarkerVisual deprivationExtrastriate processing