A Preliminary Study of Knowledge Transfer in Multi-Classification Using Gene Expression Programming

Gene Expression Programming (GEP), a variant of Genetic Programming (GP), is a well established technique for automatic generation of computer programs. Due to the flexible representation, GEP has long been concerned as a classification algorithm for various applications. Whereas, GEP cannot be exte...

Full description

Bibliographic Details
Main Authors: Tingyang Wei, Jinghui Zhong
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-01-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fnins.2019.01396/full
Description
Summary:Gene Expression Programming (GEP), a variant of Genetic Programming (GP), is a well established technique for automatic generation of computer programs. Due to the flexible representation, GEP has long been concerned as a classification algorithm for various applications. Whereas, GEP cannot be extended to multi-classification directly, and thus is only capable of treating an M-classification task as M separate binary classifications without considering the inter-relationship among classes. Consequently, GEP-based multi-classifier may suffer from output conflict of various class labels, and the underlying conflict can probably lead to the degraded performance in multi-classification. This paper employs evolutionary multitasking optimization paradigm in an existing GEP-based multi-classification framework, so as to alleviate the output conflict of each separate binary GEP classifier. Therefore, several knowledge transfer strategies are implemented to enable the interation among the population of each separate binary task. Experimental results on 10 high-dimensional datasets indicate that knowledge transfer among separate binary classifiers can enhance multi-classification performance within the same computational budget.
ISSN:1662-453X