A Path-Based Gradient Projection Algorithm for the Cost-Based System Optimum Problem in Networks with Continuously Distributed Value of Time
The cost-based system optimum problem in networks with continuously distributed value of time is formulated as a path-based form, which cannot be solved by the Frank-Wolfe algorithm. In light of magnitude improvement in the availability of computer memory in recent years, path-based algorithms have...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/271358 |
Summary: | The cost-based system optimum problem in networks with continuously distributed value of time is formulated as a path-based form, which cannot be solved by the Frank-Wolfe algorithm. In light of magnitude improvement in the availability of computer memory in recent years, path-based algorithms have been regarded as a viable approach for traffic assignment problems with reasonably large network sizes. We develop a path-based gradient projection algorithm for solving the cost-based system optimum model, based on Goldstein-Levitin-Polyak method which has been successfully applied to solve standard user equilibrium and system optimum problems. The Sioux Falls network tested is used to verify the effectiveness of the algorithm. |
---|---|
ISSN: | 1110-757X 1687-0042 |