A Decentralized Heuristic Approach towards Resource Allocation in Femtocell Networks

Femtocells represent a novel configuration for existing cellular communication, contributing towards the improvement of coverage and throughput. The dense deployment of these femtocells causes significant femto-macro and femto-femto interference, consequently deteriorating the throughput of femtocel...

Full description

Bibliographic Details
Main Authors: Kyung-Geun Lee, Adnan Shahid, Saleem Aslam
Format: Article
Language:English
Published: MDPI AG 2013-06-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/15/7/2524
Description
Summary:Femtocells represent a novel configuration for existing cellular communication, contributing towards the improvement of coverage and throughput. The dense deployment of these femtocells causes significant femto-macro and femto-femto interference, consequently deteriorating the throughput of femtocells. In this study, we compare two heuristic approaches, i.e., particle swarm optimization (PSO) and genetic algorithm (GA), for joint power assignment and resource allocation, within the context of the femtocell environment. The supposition made in this joint optimization is that the discrete power levels are available for the assignment. Furthermore, we have employed two variants of each PSO and GA: inertia weight and constriction factor model for PSO, and twopoint and uniform crossover for GA. The two proposed algorithms are in a decentralized manner, with no involvement of any centralized entity. The comparison is carried out between the two proposed algorithms for the aforementioned joint optimization problem. The contrast includes the performance metrics: including average objective function, min–max throughput of the femtocells, average throughput of the femto users, outage rate and time complexity. The results demonstrate that the decentralized PSO constriction factor outperforms the others in terms of the aforementioned performance metrics.
ISSN:1099-4300