Optimal Multi-Step-Ahead Prediction of ARCH/GARCH Models and NoVaS Transformation

This paper gives a computer-intensive approach to multi-step-ahead prediction of volatility in financial returns series under an ARCH/GARCH model and also under a model-free setting, namely employing the NoVaS transformation. Our model-based approach only assumes <inline-formula> <math disp...

Full description

Bibliographic Details
Main Authors: Jie Chen, Dimitris N. Politis
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Econometrics
Subjects:
Online Access:https://www.mdpi.com/2225-1146/7/3/34
id doaj-11351c33d04d42158a5cddd058168555
record_format Article
spelling doaj-11351c33d04d42158a5cddd0581685552020-11-25T02:30:05ZengMDPI AGEconometrics2225-11462019-08-01733410.3390/econometrics7030034econometrics7030034Optimal Multi-Step-Ahead Prediction of ARCH/GARCH Models and NoVaS TransformationJie Chen0Dimitris N. Politis1Department of Mathematics, University of California, San Diego, CA 92093, USADepartment of Mathematics, University of California, San Diego, CA 92093, USAThis paper gives a computer-intensive approach to multi-step-ahead prediction of volatility in financial returns series under an ARCH/GARCH model and also under a model-free setting, namely employing the NoVaS transformation. Our model-based approach only assumes <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>.</mo> <mi>i</mi> <mo>.</mo> <mi>d</mi> </mrow> </semantics> </math> </inline-formula> innovations without requiring knowledge/assumption of the error distribution and is computationally straightforward. The model-free approach is formally quite similar, albeit a GARCH model is not assumed. We conducted a number of simulations to show that the proposed approach works well for both point prediction (under <inline-formula> <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and/or <inline-formula> <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> measures) and prediction intervals that were constructed using bootstrapping. The performance of GARCH models and the model-free approach for multi-step ahead prediction was also compared under different data generating processes.https://www.mdpi.com/2225-1146/7/3/34bootstrap<i>L</i><sub>1</sub> and <i>L</i><sub>2</sub> measuresGARCH(1,1)NoVaS transformationmulti-step predictionMonte Carlo simulation
collection DOAJ
language English
format Article
sources DOAJ
author Jie Chen
Dimitris N. Politis
spellingShingle Jie Chen
Dimitris N. Politis
Optimal Multi-Step-Ahead Prediction of ARCH/GARCH Models and NoVaS Transformation
Econometrics
bootstrap
<i>L</i><sub>1</sub> and <i>L</i><sub>2</sub> measures
GARCH(1,1)
NoVaS transformation
multi-step prediction
Monte Carlo simulation
author_facet Jie Chen
Dimitris N. Politis
author_sort Jie Chen
title Optimal Multi-Step-Ahead Prediction of ARCH/GARCH Models and NoVaS Transformation
title_short Optimal Multi-Step-Ahead Prediction of ARCH/GARCH Models and NoVaS Transformation
title_full Optimal Multi-Step-Ahead Prediction of ARCH/GARCH Models and NoVaS Transformation
title_fullStr Optimal Multi-Step-Ahead Prediction of ARCH/GARCH Models and NoVaS Transformation
title_full_unstemmed Optimal Multi-Step-Ahead Prediction of ARCH/GARCH Models and NoVaS Transformation
title_sort optimal multi-step-ahead prediction of arch/garch models and novas transformation
publisher MDPI AG
series Econometrics
issn 2225-1146
publishDate 2019-08-01
description This paper gives a computer-intensive approach to multi-step-ahead prediction of volatility in financial returns series under an ARCH/GARCH model and also under a model-free setting, namely employing the NoVaS transformation. Our model-based approach only assumes <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>.</mo> <mi>i</mi> <mo>.</mo> <mi>d</mi> </mrow> </semantics> </math> </inline-formula> innovations without requiring knowledge/assumption of the error distribution and is computationally straightforward. The model-free approach is formally quite similar, albeit a GARCH model is not assumed. We conducted a number of simulations to show that the proposed approach works well for both point prediction (under <inline-formula> <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and/or <inline-formula> <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> measures) and prediction intervals that were constructed using bootstrapping. The performance of GARCH models and the model-free approach for multi-step ahead prediction was also compared under different data generating processes.
topic bootstrap
<i>L</i><sub>1</sub> and <i>L</i><sub>2</sub> measures
GARCH(1,1)
NoVaS transformation
multi-step prediction
Monte Carlo simulation
url https://www.mdpi.com/2225-1146/7/3/34
work_keys_str_mv AT jiechen optimalmultistepaheadpredictionofarchgarchmodelsandnovastransformation
AT dimitrisnpolitis optimalmultistepaheadpredictionofarchgarchmodelsandnovastransformation
_version_ 1724830057123282944