Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments
<p>Leaching of nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mat...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-03-01
|
Series: | Hydrology and Earth System Sciences |
Online Access: | https://www.hydrol-earth-syst-sci.net/23/1355/2019/hess-23-1355-2019.pdf |
id |
doaj-1123a402c93941469446a4994fa42058 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. A. Bourke S. A. Bourke M. Iwanyshyn J. Kohn M. J. Hendry |
spellingShingle |
S. A. Bourke S. A. Bourke M. Iwanyshyn J. Kohn M. J. Hendry Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments Hydrology and Earth System Sciences |
author_facet |
S. A. Bourke S. A. Bourke M. Iwanyshyn J. Kohn M. J. Hendry |
author_sort |
S. A. Bourke |
title |
Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments |
title_short |
Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments |
title_full |
Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments |
title_fullStr |
Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments |
title_full_unstemmed |
Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments |
title_sort |
sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments |
publisher |
Copernicus Publications |
series |
Hydrology and Earth System Sciences |
issn |
1027-5606 1607-7938 |
publishDate |
2019-03-01 |
description |
<p>Leaching of nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="57a4663cbf0d11bf294d99bb32c9ae29"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00001.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00001.png"/></svg:svg></span></span>) from animal waste or fertilisers at
agricultural operations can result in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4c315b3ea451cf26923ad12993612b33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00002.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00002.png"/></svg:svg></span></span> contamination of
groundwater, lakes, and streams. Understanding the sources and fate of
nitrate in groundwater systems in glacial sediments, which underlie many
agricultural operations, is critical for managing impacts of human food
production on the environment. Elevated <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a186e28964d6ae507e65dbc91f8b1f71"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00003.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00003.png"/></svg:svg></span></span> concentrations in
groundwater can be naturally attenuated through mixing or denitrification.
Here we use isotopic enrichment of the stable isotope values of
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e16cba38499a6a16cb1a10e488ec56da"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00004.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00004.png"/></svg:svg></span></span> to quantify the amount of denitrification in groundwater at
two confined feeding operations overlying glacial sediments in Alberta,
Canada. Uncertainty in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">15</mn></msup><msub><mi mathvariant="normal">N</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="f57ee86612cf590febf09c614387be99"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00005.svg" width="42pt" height="18pt" src="hess-23-1355-2019-ie00005.png"/></svg:svg></span></span> and
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><msub><mi mathvariant="normal">O</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="43pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="2025ff7cbf2aa6a13643b32df03193f0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00006.svg" width="43pt" height="18pt" src="hess-23-1355-2019-ie00006.png"/></svg:svg></span></span> values of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a02883d0956e7dc256b9fe9fffa70b09"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00007.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00007.png"/></svg:svg></span></span> source and
denitrification enrichment factors are accounted for using a Monte Carlo
approach. When denitrification could be quantified, we used these values to
constrain a mixing model based on <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00008.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00008.png"/></svg:svg></span></span> and <span class="inline-formula">Cl<sup>−</sup></span>
concentrations. Using this novel approach we were able to reconstruct the
initial <span class="inline-formula">NO<sub>3</sub>−N</span> concentration and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo><mi mathvariant="normal">N</mi><mo>/</mo><msup><mi mathvariant="normal">Cl</mi><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5b87f7e16e6ce23de2042aac34d16bce"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00009.svg" width="62pt" height="15pt" src="hess-23-1355-2019-ie00009.png"/></svg:svg></span></span> ratio at the
point of entry to the groundwater system. Manure filtrate had
total nitrogen (TN) of up to 1820 mg L<span class="inline-formula"><sup>−1</sup></span>, which was predominantly
organic N and <span class="inline-formula">NH<sub>3</sub></span>. Groundwater had up to 85 mg L<span class="inline-formula"><sup>−1</sup></span> TN, which
was predominantly <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ecc3e6dd5af0ffb1da8bfbfcb16b8e8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00010.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00010.png"/></svg:svg></span></span>. The addition of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00011.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00011.png"/></svg:svg></span></span> to the
local groundwater system from temporary manure piles and pens equalled or
exceeded <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="822fcc3376206f5298bc14405cca7022"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00012.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00012.png"/></svg:svg></span></span> additions from earthen manure storages at these
sites. On-farm management of manure waste should therefore increasingly focus
on limiting manure piles in direct contact with the soil and encourage
storage in lined lagoons. Nitrate attenuation at both sites is attributed to
a spatially variable combination of mixing and denitrification, but is
dominated by denitrification. Where identified, denitrification reduced
agriculturally derived <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="7dd3c683c0655cd2a5c1ed2d08ea01e9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00013.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00013.png"/></svg:svg></span></span> concentrations by at least half and,
in some wells, completely. Infiltration to groundwater systems in glacial
sediments where <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="7248c728767abac31fc80ac33e5f4469"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00014.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00014.png"/></svg:svg></span></span> can be naturally attenuated is likely
preferable to off-farm export via runoff or drainage networks, especially if
local groundwater is not used for potable water supply.</p> |
url |
https://www.hydrol-earth-syst-sci.net/23/1355/2019/hess-23-1355-2019.pdf |
work_keys_str_mv |
AT sabourke sourcesandfateofnitrateingroundwateratagriculturaloperationsoverlyingglacialsediments AT sabourke sourcesandfateofnitrateingroundwateratagriculturaloperationsoverlyingglacialsediments AT miwanyshyn sourcesandfateofnitrateingroundwateratagriculturaloperationsoverlyingglacialsediments AT jkohn sourcesandfateofnitrateingroundwateratagriculturaloperationsoverlyingglacialsediments AT mjhendry sourcesandfateofnitrateingroundwateratagriculturaloperationsoverlyingglacialsediments |
_version_ |
1724911757995016192 |
spelling |
doaj-1123a402c93941469446a4994fa420582020-11-25T02:11:56ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382019-03-01231355137310.5194/hess-23-1355-2019Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sedimentsS. A. Bourke0S. A. Bourke1M. Iwanyshyn2J. Kohn3M. J. Hendry4Department of Geological Sciences, University of Saskatchewan, Saskatchewan, SK, S7N 5C9, CanadaSchool of Earth Sciences, University of Western Australia, Crawley, WA, 6009, AustraliaNatural Resources Conservation Board, Calgary, AB, T2P 0R4, CanadaAlberta Agriculture and Forestry, Irrigation and Farm Water Branch, Edmonton, AB, T6H 5T6, CanadaDepartment of Geological Sciences, University of Saskatchewan, Saskatchewan, SK, S7N 5C9, Canada<p>Leaching of nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="57a4663cbf0d11bf294d99bb32c9ae29"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00001.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00001.png"/></svg:svg></span></span>) from animal waste or fertilisers at agricultural operations can result in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4c315b3ea451cf26923ad12993612b33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00002.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00002.png"/></svg:svg></span></span> contamination of groundwater, lakes, and streams. Understanding the sources and fate of nitrate in groundwater systems in glacial sediments, which underlie many agricultural operations, is critical for managing impacts of human food production on the environment. Elevated <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a186e28964d6ae507e65dbc91f8b1f71"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00003.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00003.png"/></svg:svg></span></span> concentrations in groundwater can be naturally attenuated through mixing or denitrification. Here we use isotopic enrichment of the stable isotope values of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e16cba38499a6a16cb1a10e488ec56da"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00004.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00004.png"/></svg:svg></span></span> to quantify the amount of denitrification in groundwater at two confined feeding operations overlying glacial sediments in Alberta, Canada. Uncertainty in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">15</mn></msup><msub><mi mathvariant="normal">N</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="f57ee86612cf590febf09c614387be99"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00005.svg" width="42pt" height="18pt" src="hess-23-1355-2019-ie00005.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><msub><mi mathvariant="normal">O</mi><mrow><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="43pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="2025ff7cbf2aa6a13643b32df03193f0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00006.svg" width="43pt" height="18pt" src="hess-23-1355-2019-ie00006.png"/></svg:svg></span></span> values of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a02883d0956e7dc256b9fe9fffa70b09"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00007.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00007.png"/></svg:svg></span></span> source and denitrification enrichment factors are accounted for using a Monte Carlo approach. When denitrification could be quantified, we used these values to constrain a mixing model based on <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00008.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00008.png"/></svg:svg></span></span> and <span class="inline-formula">Cl<sup>−</sup></span> concentrations. Using this novel approach we were able to reconstruct the initial <span class="inline-formula">NO<sub>3</sub>−N</span> concentration and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo><mi mathvariant="normal">N</mi><mo>/</mo><msup><mi mathvariant="normal">Cl</mi><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5b87f7e16e6ce23de2042aac34d16bce"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00009.svg" width="62pt" height="15pt" src="hess-23-1355-2019-ie00009.png"/></svg:svg></span></span> ratio at the point of entry to the groundwater system. Manure filtrate had total nitrogen (TN) of up to 1820 mg L<span class="inline-formula"><sup>−1</sup></span>, which was predominantly organic N and <span class="inline-formula">NH<sub>3</sub></span>. Groundwater had up to 85 mg L<span class="inline-formula"><sup>−1</sup></span> TN, which was predominantly <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ecc3e6dd5af0ffb1da8bfbfcb16b8e8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00010.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00010.png"/></svg:svg></span></span>. The addition of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00011.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00011.png"/></svg:svg></span></span> to the local groundwater system from temporary manure piles and pens equalled or exceeded <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="822fcc3376206f5298bc14405cca7022"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00012.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00012.png"/></svg:svg></span></span> additions from earthen manure storages at these sites. On-farm management of manure waste should therefore increasingly focus on limiting manure piles in direct contact with the soil and encourage storage in lined lagoons. Nitrate attenuation at both sites is attributed to a spatially variable combination of mixing and denitrification, but is dominated by denitrification. Where identified, denitrification reduced agriculturally derived <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="7dd3c683c0655cd2a5c1ed2d08ea01e9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00013.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00013.png"/></svg:svg></span></span> concentrations by at least half and, in some wells, completely. Infiltration to groundwater systems in glacial sediments where <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="7248c728767abac31fc80ac33e5f4469"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-23-1355-2019-ie00014.svg" width="25pt" height="16pt" src="hess-23-1355-2019-ie00014.png"/></svg:svg></span></span> can be naturally attenuated is likely preferable to off-farm export via runoff or drainage networks, especially if local groundwater is not used for potable water supply.</p>https://www.hydrol-earth-syst-sci.net/23/1355/2019/hess-23-1355-2019.pdf |