NAG-PEGylated multilamellar liposomes for BBB-GLUT transporter targeting
The primary objective of the research study is to investigate Glucose (GLUT) transporter targeting of the drug (Citalopram-Hbr) for increased permeability across the Blood-Brain Barrier (BBB). The current study reports the development, physicochemical characterization, cytotoxicity analysis and in-v...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2019-01-01
|
Series: | Cogent Medicine |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/2331205X.2019.1701343 |
id |
doaj-1116ac85dddb427fa12396ba9c1e8cd3 |
---|---|
record_format |
Article |
spelling |
doaj-1116ac85dddb427fa12396ba9c1e8cd32021-03-18T15:12:53ZengTaylor & Francis GroupCogent Medicine2331-205X2019-01-016110.1080/2331205X.2019.17013431701343NAG-PEGylated multilamellar liposomes for BBB-GLUT transporter targetingNahid S. Kamal0Muhammad J. Habib1Ahmed S. Zidan2Pradeep K. Karla3Howard UniversityHoward UniversityZagazig UniversityHoward UniversityThe primary objective of the research study is to investigate Glucose (GLUT) transporter targeting of the drug (Citalopram-Hbr) for increased permeability across the Blood-Brain Barrier (BBB). The current study reports the development, physicochemical characterization, cytotoxicity analysis and in-vitro BBB permeability assessment of the Citalopram-Hbr liposomal formulations. Rat Primary Brain Microvascular Endothelial Cells (RPBECs) were used for cytotoxicity analysis and drug permeability testing. Five N-Acetyl Glucosamine (NAG) coated PEGylated multilamellar liposomal formulations were prepared and tested. Permeability of the liposomal formulations was evaluated in RPBECs monolayer. The particle size of the formulations ranged from 13 to 4259 nm. Entrapment efficiency was 50-75%. Cytotoxicity analysis indicated viability (>90%) for all five formulations (0.3–1.25 mg/ml). Apparent drug permeability (Papp) of the formulations ranged from 5.01 × 104 to 15 × 104 cm/min. The study demonstrated successful preparation of NAG-coated PEGylated multilamellar liposomal formulations with high drug entrapment efficiency. Cytotoxicity data indicated that the formulations were well tolerated by the cells up to a concentration of 1.25 mg/ml. Transport study data demonstrated that RPBMECs monolayers can be employed as a robust screening tool for future drug transport studies targeting GLUT transporter on the BBB. The drug permeability values provide a promising preliminarily proof that NAG-coated liposomal formulations can be an effective tool for BBB-GLUT transporter targeting.http://dx.doi.org/10.1080/2331205X.2019.1701343n-acetyl glucosamine (nag)glucose (glut) transporterblood-brain barrier (bbb)transporter targeted drug deliveryliposomes |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nahid S. Kamal Muhammad J. Habib Ahmed S. Zidan Pradeep K. Karla |
spellingShingle |
Nahid S. Kamal Muhammad J. Habib Ahmed S. Zidan Pradeep K. Karla NAG-PEGylated multilamellar liposomes for BBB-GLUT transporter targeting Cogent Medicine n-acetyl glucosamine (nag) glucose (glut) transporter blood-brain barrier (bbb) transporter targeted drug delivery liposomes |
author_facet |
Nahid S. Kamal Muhammad J. Habib Ahmed S. Zidan Pradeep K. Karla |
author_sort |
Nahid S. Kamal |
title |
NAG-PEGylated multilamellar liposomes for BBB-GLUT transporter targeting |
title_short |
NAG-PEGylated multilamellar liposomes for BBB-GLUT transporter targeting |
title_full |
NAG-PEGylated multilamellar liposomes for BBB-GLUT transporter targeting |
title_fullStr |
NAG-PEGylated multilamellar liposomes for BBB-GLUT transporter targeting |
title_full_unstemmed |
NAG-PEGylated multilamellar liposomes for BBB-GLUT transporter targeting |
title_sort |
nag-pegylated multilamellar liposomes for bbb-glut transporter targeting |
publisher |
Taylor & Francis Group |
series |
Cogent Medicine |
issn |
2331-205X |
publishDate |
2019-01-01 |
description |
The primary objective of the research study is to investigate Glucose (GLUT) transporter targeting of the drug (Citalopram-Hbr) for increased permeability across the Blood-Brain Barrier (BBB). The current study reports the development, physicochemical characterization, cytotoxicity analysis and in-vitro BBB permeability assessment of the Citalopram-Hbr liposomal formulations. Rat Primary Brain Microvascular Endothelial Cells (RPBECs) were used for cytotoxicity analysis and drug permeability testing. Five N-Acetyl Glucosamine (NAG) coated PEGylated multilamellar liposomal formulations were prepared and tested. Permeability of the liposomal formulations was evaluated in RPBECs monolayer. The particle size of the formulations ranged from 13 to 4259 nm. Entrapment efficiency was 50-75%. Cytotoxicity analysis indicated viability (>90%) for all five formulations (0.3–1.25 mg/ml). Apparent drug permeability (Papp) of the formulations ranged from 5.01 × 104 to 15 × 104 cm/min. The study demonstrated successful preparation of NAG-coated PEGylated multilamellar liposomal formulations with high drug entrapment efficiency. Cytotoxicity data indicated that the formulations were well tolerated by the cells up to a concentration of 1.25 mg/ml. Transport study data demonstrated that RPBMECs monolayers can be employed as a robust screening tool for future drug transport studies targeting GLUT transporter on the BBB. The drug permeability values provide a promising preliminarily proof that NAG-coated liposomal formulations can be an effective tool for BBB-GLUT transporter targeting. |
topic |
n-acetyl glucosamine (nag) glucose (glut) transporter blood-brain barrier (bbb) transporter targeted drug delivery liposomes |
url |
http://dx.doi.org/10.1080/2331205X.2019.1701343 |
work_keys_str_mv |
AT nahidskamal nagpegylatedmultilamellarliposomesforbbbgluttransportertargeting AT muhammadjhabib nagpegylatedmultilamellarliposomesforbbbgluttransportertargeting AT ahmedszidan nagpegylatedmultilamellarliposomesforbbbgluttransportertargeting AT pradeepkkarla nagpegylatedmultilamellarliposomesforbbbgluttransportertargeting |
_version_ |
1724215540312965120 |