Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM Cells
Elevated epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) signaling are known to contribute to the malignant properties of glioblastoma multiforme (GBM), which include uncontrolled cell proliferation and evasion of apoptosis. Small molecule inhibitors that target the...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2005-10-01
|
Series: | Neoplasia: An International Journal for Oncology Research |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1476558605801162 |
id |
doaj-1115f966e5754d1c80e56b364df5c242 |
---|---|
record_format |
Article |
spelling |
doaj-1115f966e5754d1c80e56b364df5c2422020-11-24T23:00:41ZengElsevierNeoplasia: An International Journal for Oncology Research1476-55861522-80022005-10-0171092192910.1593/neo.05361Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM CellsRavi D. Rao0Ann C. Mladek1Jeffrey D. Lamont2Jennie M. Goble3Charles Erlichman4C. David James5Jann N. Sarkaria6Department of Oncology, Mayo Clinic, Rochester, MN 55905, USADepartment of Oncology, Mayo Clinic, Rochester, MN 55905, USADepartment of Oncology, Mayo Clinic, Rochester, MN 55905, USADepartment of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USADepartment of Oncology, Mayo Clinic, Rochester, MN 55905, USADepartment of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USADepartment of Oncology, Mayo Clinic, Rochester, MN 55905, USA Elevated epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) signaling are known to contribute to the malignant properties of glioblastoma multiforme (GBM), which include uncontrolled cell proliferation and evasion of apoptosis. Small molecule inhibitors that target these protein kinases have been evaluated in multiple clinical trials for cancer patients, including those with GBM. Here we have examined the cellular and molecular effects of a combined kinase inhibition of mTOR (rapamycin) and EGFR (EKI-785) in U87 and U251 GBM cells. Simultaneous treatment with rapamycin and EKI-785 results in synergistic antiproliferative as well as proapoptotic effects. At a molecular level, rapamycin alone significantly decreases S6 phosphorylation, whereas EKI-785 alone promotes substantially reduced signal transducer and activator of transcription (STAT3) phosphorylation. Treatment with rapamycin alone also increases Akt phosphorylation on Ser-473, but this effect is blocked by a simultaneous administration of EKI-785. Individually, EKI-785 diminishes while rapamycin promotes the binding of the translation inhibitor eukaryotic initiation factor 4E binding protein (4EBP1) to the eukaryotic translation initiation factor 4E (eIF4E). In spite of these opposing effects, the highest level of 4EBP1-eIF4E binding occurs with the combination of the two inhibitors. These results indicate that the inhibition of EGFR and mTOR has distinct as well as common signaling consequences and provides a molecular rationale forthe synergistic antitumor effects of EKI-785 and rapamycin administration. http://www.sciencedirect.com/science/article/pii/S1476558605801162epidermal growth factor receptorsignal transductionrapamycinglioblastoma4EBP1AM |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ravi D. Rao Ann C. Mladek Jeffrey D. Lamont Jennie M. Goble Charles Erlichman C. David James Jann N. Sarkaria |
spellingShingle |
Ravi D. Rao Ann C. Mladek Jeffrey D. Lamont Jennie M. Goble Charles Erlichman C. David James Jann N. Sarkaria Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM Cells Neoplasia: An International Journal for Oncology Research epidermal growth factor receptor signal transduction rapamycin glioblastoma 4EBP1 AM |
author_facet |
Ravi D. Rao Ann C. Mladek Jeffrey D. Lamont Jennie M. Goble Charles Erlichman C. David James Jann N. Sarkaria |
author_sort |
Ravi D. Rao |
title |
Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM Cells |
title_short |
Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM Cells |
title_full |
Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM Cells |
title_fullStr |
Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM Cells |
title_full_unstemmed |
Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM Cells |
title_sort |
disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mtor and egfr inhibition in gbm cells |
publisher |
Elsevier |
series |
Neoplasia: An International Journal for Oncology Research |
issn |
1476-5586 1522-8002 |
publishDate |
2005-10-01 |
description |
Elevated epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) signaling are known to contribute to the malignant properties of glioblastoma multiforme (GBM), which include uncontrolled cell proliferation and evasion of apoptosis. Small molecule inhibitors that target these protein kinases have been evaluated in multiple clinical trials for cancer patients, including those with GBM. Here we have examined the cellular and molecular effects of a combined kinase inhibition of mTOR (rapamycin) and EGFR (EKI-785) in U87 and U251 GBM cells. Simultaneous treatment with rapamycin and EKI-785 results in synergistic antiproliferative as well as proapoptotic effects. At a molecular level, rapamycin alone significantly decreases S6 phosphorylation, whereas EKI-785 alone promotes substantially reduced signal transducer and activator of transcription (STAT3) phosphorylation. Treatment with rapamycin alone also increases Akt phosphorylation on Ser-473, but this effect is blocked by a simultaneous administration of EKI-785. Individually, EKI-785 diminishes while rapamycin promotes the binding of the translation inhibitor eukaryotic initiation factor 4E binding protein (4EBP1) to the eukaryotic translation initiation factor 4E (eIF4E). In spite of these opposing effects, the highest level of 4EBP1-eIF4E binding occurs with the combination of the two inhibitors. These results indicate that the inhibition of EGFR and mTOR has distinct as well as common signaling consequences and provides a molecular rationale forthe synergistic antitumor effects of EKI-785 and rapamycin administration.
|
topic |
epidermal growth factor receptor signal transduction rapamycin glioblastoma 4EBP1 AM |
url |
http://www.sciencedirect.com/science/article/pii/S1476558605801162 |
work_keys_str_mv |
AT ravidrao disruptionofparallelandconvergingsignalingpathwayscontributestothesynergisticantitumoreffectsofsimultaneousmtorandegfrinhibitioningbmcells AT anncmladek disruptionofparallelandconvergingsignalingpathwayscontributestothesynergisticantitumoreffectsofsimultaneousmtorandegfrinhibitioningbmcells AT jeffreydlamont disruptionofparallelandconvergingsignalingpathwayscontributestothesynergisticantitumoreffectsofsimultaneousmtorandegfrinhibitioningbmcells AT jenniemgoble disruptionofparallelandconvergingsignalingpathwayscontributestothesynergisticantitumoreffectsofsimultaneousmtorandegfrinhibitioningbmcells AT charleserlichman disruptionofparallelandconvergingsignalingpathwayscontributestothesynergisticantitumoreffectsofsimultaneousmtorandegfrinhibitioningbmcells AT cdavidjames disruptionofparallelandconvergingsignalingpathwayscontributestothesynergisticantitumoreffectsofsimultaneousmtorandegfrinhibitioningbmcells AT jannnsarkaria disruptionofparallelandconvergingsignalingpathwayscontributestothesynergisticantitumoreffectsofsimultaneousmtorandegfrinhibitioningbmcells |
_version_ |
1725641481463529472 |