Modeling the Transport and Volumetric Properties of Solutions Containing Polymer and Electrolyte with New Model

A new theoretical model based on the local composition concept (TNRF-mNRTL model) was proposed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. This contribution of interaction along with the long-range contribution of interacti...

Full description

Bibliographic Details
Main Authors: Ali Mohammadian-Abriz, Roghayeh Majdan-Cegincara
Format: Article
Language:English
Published: Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR 2018-08-01
Series:Iranian Journal of Chemistry & Chemical Engineering
Subjects:
Online Access:http://www.ijcce.ac.ir/article_28218_7854e134555468ae9540b61ac7c418e5.pdf
Description
Summary:A new theoretical model based on the local composition concept (TNRF-mNRTL model) was proposed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. This contribution of interaction along with the long-range contribution of interaction (Pitzer-Debye-Hückel equation), configurational entropy of mixing (Flory-Huggins relation) and Eyring absolute rate theory were used to fit the viscosity values of ternary aqueous solutions of polymer + electrolyte with considering temperature dependency. The local composition models which are available for correlating the thermodynamic properties of ternary polymer + electrolyte solutions (ternary-Wilson, ternary-modified NRTL, and ternary-modified Wilson) with Eyring absolute rate theory were also used for fitting the viscosity values of ternary solutions for the first time. THe fitting quality of Eyring-TNRF-mNRTL model was compared with these models. The equations of apparent molar volume were also derived from TNRF-mNRTL, ternary-Wilson, ternary-modified NRTL, and ternary-modified Wilson models. These equations were used for correlating the apparent molar volume and density values of ternary polymer + electrolyte solutions.
ISSN:1021-9986
1021-9986