Summary: | We report a highly compliant process for patterning nanoparticle arrays on micro- and nanomechanical devices. The distinctive step involves the single layer self-assembled nanoparticles on top of released nanomechanical devices. We demonstrate the process by fabricating sizable arrays of nanomechanical devices on silicon-on-insulator substrates, acting as nanomechanical torque magnetometers. Later, the nanoparticles were self-assembled in geometrical shapes on top of the devices by a unique combination of top-down and bottom-up methods. The self-assembled array of nanoparticles successfully showed a magnetic torque signal by magnetic actuation of the magnetometer. This patterning process can be generalized for any shape and for a wide range of nanoparticles on the nanomechanical resonators.
|