Full factorial design analysis of carbon nanotube polymer-cement composites

The work described in this paper is related to the effect of adding carbon nanotubes (CNT) on the mechanical properties of polymer-cement composites. A full factorial design has been performed on 160 samples to identify the contribution provided by the following factors: polymeric phase addition, CN...

Full description

Bibliographic Details
Main Authors: Fábio de Paiva Cota, Túlio Hallak Panzera, Marco Antônio Schiavon, André Luís Christoforo, Paulo Henrique Ribeiro Borges, Chris Bowen, Fabrizio Scarpa
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2012-08-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000400015
Description
Summary:The work described in this paper is related to the effect of adding carbon nanotubes (CNT) on the mechanical properties of polymer-cement composites. A full factorial design has been performed on 160 samples to identify the contribution provided by the following factors: polymeric phase addition, CNT weight addition and water/cement ratio. The response parameters of the full factorial design were the bulk density, apparent porosity, compressive strength and elastic modulus of the polymer-cement-based nanocomposites. All the factors considered in this analysis affected significantly the bulk density and apparent porosity of the composites. The compressive strength and elastic modulus were affected primarily by the cross-interactions between polymeric phase and CNT additions, and the water/cement ratio with polymeric phase factors.
ISSN:1516-1439