Moment feature based fast feature extraction algorithm for moving object detection using aerial images.
Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4452346?pdf=render |
id |
doaj-10e8bccace8e46a7a82e066d02f5bdfb |
---|---|
record_format |
Article |
spelling |
doaj-10e8bccace8e46a7a82e066d02f5bdfb2020-11-24T21:27:22ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01106e012621210.1371/journal.pone.0126212Moment feature based fast feature extraction algorithm for moving object detection using aerial images.A F M Saifuddin SaifAnton Satria PrabuwonoZainal Rasyid MahayuddinFast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA). Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology.http://europepmc.org/articles/PMC4452346?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A F M Saifuddin Saif Anton Satria Prabuwono Zainal Rasyid Mahayuddin |
spellingShingle |
A F M Saifuddin Saif Anton Satria Prabuwono Zainal Rasyid Mahayuddin Moment feature based fast feature extraction algorithm for moving object detection using aerial images. PLoS ONE |
author_facet |
A F M Saifuddin Saif Anton Satria Prabuwono Zainal Rasyid Mahayuddin |
author_sort |
A F M Saifuddin Saif |
title |
Moment feature based fast feature extraction algorithm for moving object detection using aerial images. |
title_short |
Moment feature based fast feature extraction algorithm for moving object detection using aerial images. |
title_full |
Moment feature based fast feature extraction algorithm for moving object detection using aerial images. |
title_fullStr |
Moment feature based fast feature extraction algorithm for moving object detection using aerial images. |
title_full_unstemmed |
Moment feature based fast feature extraction algorithm for moving object detection using aerial images. |
title_sort |
moment feature based fast feature extraction algorithm for moving object detection using aerial images. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA). Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology. |
url |
http://europepmc.org/articles/PMC4452346?pdf=render |
work_keys_str_mv |
AT afmsaifuddinsaif momentfeaturebasedfastfeatureextractionalgorithmformovingobjectdetectionusingaerialimages AT antonsatriaprabuwono momentfeaturebasedfastfeatureextractionalgorithmformovingobjectdetectionusingaerialimages AT zainalrasyidmahayuddin momentfeaturebasedfastfeatureextractionalgorithmformovingobjectdetectionusingaerialimages |
_version_ |
1725975006542823424 |