On the Modified Jump Problem for the Laplace Equation in the Exterior of Cracks in a Plane

The boundary value problem for the Laplace equation outside several cracks in a plane is studied. The jump of the solution of the Laplace equation and the boundary condition containing the jump of its normal derivative are specified on the cracks. The problem has unique classical solution under cert...

Full description

Bibliographic Details
Main Authors: P. A. Krutitskii, A. Sasamoto
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/579457
Description
Summary:The boundary value problem for the Laplace equation outside several cracks in a plane is studied. The jump of the solution of the Laplace equation and the boundary condition containing the jump of its normal derivative are specified on the cracks. The problem has unique classical solution under certain conditions. The new integral representation for the unique solution of this problem is obtained. The problem is reduced to the uniquely solvable Fredholm equation of the second kind and index zero. The integral representation and integral equation are essentially simpler than those derived for this problem earlier. The singularities at the ends of the cracks are investigated.
ISSN:0161-1712
1687-0425