Circular RNA hsa_circ_0000511 Improves Epithelial Mesenchymal Transition of Cervical Cancer by Regulating hsa-mir-296-5p/HMGA1

As the second largest gynecological cancer, cervical cancer has been widely reported in recent years in which circular RNA is involved in the disease process. We earlier found that the expression of hsa_circ_0000511 in cervical cancer cells increased significantly, but its role in the process of cer...

Full description

Bibliographic Details
Main Authors: Jia Xie, Qian Chen, Ping Zhou, Wenli Fan
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Journal of Immunology Research
Online Access:http://dx.doi.org/10.1155/2021/9964538
id doaj-10a6dc0954004d2bba3b79b064aab967
record_format Article
spelling doaj-10a6dc0954004d2bba3b79b064aab9672021-06-07T02:13:39ZengHindawi LimitedJournal of Immunology Research2314-71562021-01-01202110.1155/2021/9964538Circular RNA hsa_circ_0000511 Improves Epithelial Mesenchymal Transition of Cervical Cancer by Regulating hsa-mir-296-5p/HMGA1Jia Xie0Qian Chen1Ping Zhou2Wenli Fan3Department of GynecologyDepartment of GynecologyWuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital)Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital)As the second largest gynecological cancer, cervical cancer has been widely reported in recent years in which circular RNA is involved in the disease process. We earlier found that the expression of hsa_circ_0000511 in cervical cancer cells increased significantly, but its role in the process of cervical cancer is not clear. The purpose of this study is to explore its possible mechanisms in cervical cancer. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), cell counting kit-8 assay, Transwell test, cell transfection, RNA pull-down assay and dual-luciferase reporter assay, and Western blot analysis were used to detect the expression and distribution of hsa_circ_0000511 in SiHa and HeLa cells, the ability of invasion and proliferation, and the modulated relationships between hsa_circ_0000511 and hsa-mir-296-5p, hsa-mir-296-5p, and HMGA1. hsa_circ_0000511 had the highest expression in SiHa and HeLa cells, and the expression in the cytoplasm was significantly higher than that in the nucleus, and its expression was not affected by RNase R. When hsa_circ_0000511 was silenced, its expression in SiHa and HeLa cells was significantly decreased; the proliferation, invasion, and migration abilities of the two kinds of cells were significantly enhanced; and the protein expression of E-cadherin was significantly upregulated, while the protein expression of N-cadherin was significantly downregulated. The expression of hsa-mir-296-5p was lower in SiHa and HeLa cells; however, its expression was increased when hsa_circ_0000511 was inhibited and decreased when hsa_circ_0000511 was overexpressed, so did the ability of proliferation, invasion, and migration and the protein expression of E-cadherin. Interestingly, the protein expression of HMGA1 also changed in these two cells when hsa-mir-296-5p was inhibited or overexpressed. Our results indicate that the upregulated hsa_circ_0000511 can inhibit the proliferation, invasion, and migration of SiHa and HeLa cells by regulating hsa-mir-296-5p/HMGA1, suggesting that the hsa_circ_0000511/hsa-mir-296-5p/HMGA1 pathway may be a potential target for the treatment of cervical cancer.http://dx.doi.org/10.1155/2021/9964538
collection DOAJ
language English
format Article
sources DOAJ
author Jia Xie
Qian Chen
Ping Zhou
Wenli Fan
spellingShingle Jia Xie
Qian Chen
Ping Zhou
Wenli Fan
Circular RNA hsa_circ_0000511 Improves Epithelial Mesenchymal Transition of Cervical Cancer by Regulating hsa-mir-296-5p/HMGA1
Journal of Immunology Research
author_facet Jia Xie
Qian Chen
Ping Zhou
Wenli Fan
author_sort Jia Xie
title Circular RNA hsa_circ_0000511 Improves Epithelial Mesenchymal Transition of Cervical Cancer by Regulating hsa-mir-296-5p/HMGA1
title_short Circular RNA hsa_circ_0000511 Improves Epithelial Mesenchymal Transition of Cervical Cancer by Regulating hsa-mir-296-5p/HMGA1
title_full Circular RNA hsa_circ_0000511 Improves Epithelial Mesenchymal Transition of Cervical Cancer by Regulating hsa-mir-296-5p/HMGA1
title_fullStr Circular RNA hsa_circ_0000511 Improves Epithelial Mesenchymal Transition of Cervical Cancer by Regulating hsa-mir-296-5p/HMGA1
title_full_unstemmed Circular RNA hsa_circ_0000511 Improves Epithelial Mesenchymal Transition of Cervical Cancer by Regulating hsa-mir-296-5p/HMGA1
title_sort circular rna hsa_circ_0000511 improves epithelial mesenchymal transition of cervical cancer by regulating hsa-mir-296-5p/hmga1
publisher Hindawi Limited
series Journal of Immunology Research
issn 2314-7156
publishDate 2021-01-01
description As the second largest gynecological cancer, cervical cancer has been widely reported in recent years in which circular RNA is involved in the disease process. We earlier found that the expression of hsa_circ_0000511 in cervical cancer cells increased significantly, but its role in the process of cervical cancer is not clear. The purpose of this study is to explore its possible mechanisms in cervical cancer. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), cell counting kit-8 assay, Transwell test, cell transfection, RNA pull-down assay and dual-luciferase reporter assay, and Western blot analysis were used to detect the expression and distribution of hsa_circ_0000511 in SiHa and HeLa cells, the ability of invasion and proliferation, and the modulated relationships between hsa_circ_0000511 and hsa-mir-296-5p, hsa-mir-296-5p, and HMGA1. hsa_circ_0000511 had the highest expression in SiHa and HeLa cells, and the expression in the cytoplasm was significantly higher than that in the nucleus, and its expression was not affected by RNase R. When hsa_circ_0000511 was silenced, its expression in SiHa and HeLa cells was significantly decreased; the proliferation, invasion, and migration abilities of the two kinds of cells were significantly enhanced; and the protein expression of E-cadherin was significantly upregulated, while the protein expression of N-cadherin was significantly downregulated. The expression of hsa-mir-296-5p was lower in SiHa and HeLa cells; however, its expression was increased when hsa_circ_0000511 was inhibited and decreased when hsa_circ_0000511 was overexpressed, so did the ability of proliferation, invasion, and migration and the protein expression of E-cadherin. Interestingly, the protein expression of HMGA1 also changed in these two cells when hsa-mir-296-5p was inhibited or overexpressed. Our results indicate that the upregulated hsa_circ_0000511 can inhibit the proliferation, invasion, and migration of SiHa and HeLa cells by regulating hsa-mir-296-5p/HMGA1, suggesting that the hsa_circ_0000511/hsa-mir-296-5p/HMGA1 pathway may be a potential target for the treatment of cervical cancer.
url http://dx.doi.org/10.1155/2021/9964538
work_keys_str_mv AT jiaxie circularrnahsacirc0000511improvesepithelialmesenchymaltransitionofcervicalcancerbyregulatinghsamir2965phmga1
AT qianchen circularrnahsacirc0000511improvesepithelialmesenchymaltransitionofcervicalcancerbyregulatinghsamir2965phmga1
AT pingzhou circularrnahsacirc0000511improvesepithelialmesenchymaltransitionofcervicalcancerbyregulatinghsamir2965phmga1
AT wenlifan circularrnahsacirc0000511improvesepithelialmesenchymaltransitionofcervicalcancerbyregulatinghsamir2965phmga1
_version_ 1721393067533008896