CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1), recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLO...

Full description

Bibliographic Details
Main Authors: Aya Matsui, Hideaki Yokoo, Yoichi Negishi, Yoko Endo-Takahashi, Nicole A L Chun, Ichiro Kadouchi, Ryo Suzuki, Kazuo Maruyama, Yukihiko Aramaki, Kentaro Semba, Eiji Kobayashi, Masafumi Takahashi, Takashi Murakami
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3430639?pdf=render
Description
Summary:BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1), recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+)Gr1(+) myeloid-derived cells at tumor sites in mice and promoted CD31(+) tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+)Gr1(high)F4/80(-) cells (≈ 90%) with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+)Gr1(+) cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.
ISSN:1932-6203