Efficacy and Safety of Human Serum Albumin–Cisplatin Complex in U87MG Xenograft Mouse Models

Cisplatin (cis-diamminedichloroplatinum (II), CDDP) is a chemotherapeutic drug widely used against many solid tumors. A pharmacokinetics study found that CDDP can bind to human serum albumin (HSA), which is the most abundant plasma protein in serum. HSA has the advantage of being a nanocarrier and c...

Full description

Bibliographic Details
Main Authors: Cho Rong Park, Hyo Young Kim, Myung Geun Song, Yun-Sang Lee, Hyewon Youn, June-Key Chung, Gi Jeong Cheon, Keon Wook Kang
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/21/7932
Description
Summary:Cisplatin (cis-diamminedichloroplatinum (II), CDDP) is a chemotherapeutic drug widely used against many solid tumors. A pharmacokinetics study found that CDDP can bind to human serum albumin (HSA), which is the most abundant plasma protein in serum. HSA has the advantage of being a nanocarrier and can accumulate in tumors by passive targeting and active targeting mediated by the secreted protein acidic and rich in cysteine (SPARC). In this study, we investigated the possibility of using a CDDP–HSA complex (HSA–CDDP) as a SPARC-mediated therapeutic agent. To investigate the HSA-dependent therapeutic effect of HSA–CDDP, we used two types of U87MG glioma cells that express SPARC differently. HSA–CDDP was highly taken up in SPARC expressing cells and this uptake was enhanced with exogenous SPARC treatment in cells with low expression of SPARC. The cytotoxicity of HSA–CDDP was also higher in SPARC-expressing cells. In the tumor model, HSA–CDDP showed a similar tumor growth and survival rate to CDDP only in SPARC-expressing tumor models. The biosafety test indicated that HSA–CDDP was less nephrotoxic than CDDP, based on blood markers and histopathology examination. Our findings show that HSA–CDDP has the potential to be a novel therapeutic agent for SPARC-expressing tumors, enhancing the tumor targeting effect by HSA and reducing the nephrotoxicity of CDDP.
ISSN:1661-6596
1422-0067