Performance of Global Climate Model (GCMs) for Wind Data Analysis

The surface wind speed is an important climate variable for study of ocean wave energy and coastal erosion. The wind speed and wave height variations are caused by global warming. In the future, climate change impacts on changes of direction and wind speed which affect on wave height and wave period...

Full description

Bibliographic Details
Main Authors: Foyhirun Chutipat, Kongkitkul Duangrudee K., Ekkawatpanit Chaiwat
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/43/e3sconf_icwree18_00006.pdf
Description
Summary:The surface wind speed is an important climate variable for study of ocean wave energy and coastal erosion. The wind speed and wave height variations are caused by global warming. In the future, climate change impacts on changes of direction and wind speed which affect on wave height and wave period. The global climate model (GCMs) were developed by various institutions so each GCM has different GCM output. Then, the aim of this study is to evaluation the performance of GCMs for wind speed analysis in the area of Gulf of Thailand and Andaman Sea. In this study, the daily wind speed data was analyzed with a total of 15 GCMs and daily wind speed data of NCEP-NCAR was used as observation data to compare with wind speed data from GCMs over the period 1986-2005 (20 years). Moreover, the wind speed data was evaluated by efficiency coefficient which are root mean square error (RMSE) and mean absolute error (MAE). It was found tht MRI-CGCM3, GFDL-ESM2M, IPSL-CM5A-LR, and IPSL-CM5A-MR are consistent with the most of observation data from NCEP-NCAR.
ISSN:2267-1242