Fixed- and Variable-Temperature Kinetic Models to Predict Evaporation of Petroleum Distillates for Fire Debris Applications

Forensic fire debris analysis focuses on the identification of a foreign ignitable liquid in debris collected from the scene of a suspected intentional fire. Chromatograms of the extracted debris are compared to a suitable reference collection containing chromatograms of unevaporated and evaporated...

Full description

Bibliographic Details
Main Authors: John W. McIlroy, Ruth Waddell Smith, Victoria L. McGuffin
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Separations
Subjects:
Online Access:http://www.mdpi.com/2297-8739/5/4/47
Description
Summary:Forensic fire debris analysis focuses on the identification of a foreign ignitable liquid in debris collected from the scene of a suspected intentional fire. Chromatograms of the extracted debris are compared to a suitable reference collection containing chromatograms of unevaporated and evaporated ignitable liquids. However, there is no standardized method for the evaporation of ignitable liquids and the process itself can be time consuming, which limits the number of chromatograms of evaporated liquids included in the reference collection. This work describes the development and application of a variable-temperature kinetic model to predict evaporation rate constants and mathematically predict chromatograms corresponding to evaporated ignitable liquids. First-order evaporation rate constants were calculated for 78 selected compounds in diesel, which were used to develop predictive models of evaporation rates. Fixed-temperature models were developed to predict the rate constants at five temperatures (5, 10, 20, 30, 35 °C), yielding a mean absolute percent error (MAPE) of 10.0%. The variable-temperature model was then created from these data by multiple linear regression, yielding a MAPE of 16.4%. The model was applied to generate a reference collection of predicted chromatograms of diesel and kerosene corresponding to a range of evaporation levels. Using the modeled reference collection, successful identification of the liquid and level of evaporation in a test set of chromatograms was demonstrated.
ISSN:2297-8739