Summary: | Neuropsychological assessment, brain imaging and computational modelling have augmented our understanding of the multifaceted functional deficits in people with language disorders after stroke. Despite the volume of research using each technique, no studies have attempted to assimilate all three approaches in order to generate a unified behavioural-computational-neural model of post-stroke aphasia.The present study included data from 53 participants with chronic post-stroke aphasia and merged: aphasiological profiles based on a detailed neuropsychological assessment battery which was analysed with principal component and correlational analyses; measures of the impairment taken from Dell's computational model of word production; and the neural correlates of both behavioural and computational accounts analysed by voxel-based correlational methodology.As a result, all three strands coincide with the separation of semantic and phonological stages of aphasic naming, revealing the prominence of these dimensions for the explanation of aphasic performance. Over and above three previously described principal components (phonological ability, semantic ability, executive-demand), we observed auditory working memory as a novel factor. While the phonological Dell parameter was uniquely related to phonological errors/factor, the semantic parameter was less clear-cut, being related to both semantic errors and omissions, and loading heavily with semantic ability and auditory working memory factors. The close relationship between the semantic Dell parameter and omission errors recurred in their high lesion-correlate overlap in the anterior middle temporal gyrus. In addition, the simultaneous overlap of the lesion correlate of omission errors with more dorsal temporal regions, associated with the phonological parameter, highlights the multiple drivers that underpin this error type. The novel auditory working memory factor was located along left superior/middle temporal gyrus and ventral inferior parietal lobe.The present study fused computational, behavioural and neural data to gain comprehensive insights into the nature of the multifaceted presentations in aphasia. Our unified account contributes enhanced knowledge on dimensions explaining chronic post-stroke aphasia, the variety of factors affecting inter-individual variability, the neural basis of performance, and potential clinical implications. Keywords: Semantics, Phonology, Principal component analysis, Cognitive model, Chronic aphasia, Naming errors
|