Local Morphology Effects on the Photoluminescence Properties of Thin CsPbBr<sub>3</sub> Nanocrystal Films

Lead halide perovskites are emerging as extremely interesting active materials for a wide variety of optoelectronic and photonic devices. A deep understanding of their photophysics is thus fundamental in order to properly understand the origins of the materials active properties and to provide strat...

Full description

Bibliographic Details
Main Authors: Marco Anni, Arianna Cretí, Maria Luisa De Giorgi, Mauro Lomascolo
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/6/1470
Description
Summary:Lead halide perovskites are emerging as extremely interesting active materials for a wide variety of optoelectronic and photonic devices. A deep understanding of their photophysics is thus fundamental in order to properly understand the origins of the materials active properties and to provide strategies for improving them. In this work, we exploit the local morphological variations in a drop-cast thin CsPbBr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> nanocrystal film to show that the aggregation of NCs has strong effects on the peak wavelengths of PL spectra, the linewidth, and the intensity of dependence on temperature. An analysis based on models that are frequently used in the literature led to completely different conclusions about the intrinsic NC emission properties extracted from spectra measured in points with different contribution of the PL from the aggregates. Our results demonstrate that extreme care has to be used in order to correctly correlate the spectral PL features with the intrinsic emission properties of lead halide perovskite NC films.
ISSN:2079-4991