Atmospheric band fitting coefficients derived from a self-consistent rocket-borne experiment
<p>Based on self-consistent rocket-borne measurements of temperature, the densities of atomic oxygen and neutral air, and the volume emission of the atmospheric band (762 nm), we examined the one-step and two-step excitation mechanism of <span class="inline-formula">...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-01-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/1207/2019/acp-19-1207-2019.pdf |
Summary: | <p>Based on self-consistent rocket-borne measurements of temperature, the
densities of atomic oxygen and neutral air, and the volume emission of the
atmospheric band (762 nm), we examined the one-step and two-step excitation
mechanism of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub></mrow><mfenced close=")" open="("><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>+</mo></msubsup></mrow></mfenced></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="22pt" class="svg-formula" dspmath="mathimg" md5hash="8501444005187b3419b2cfeb981bdaf0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1207-2019-ie00001.svg" width="54pt" height="22pt" src="acp-19-1207-2019-ie00001.png"/></svg:svg></span></span> for nighttime
conditions. Following McDade et al. (1986), we derived the empirical fitting
coefficients, which parameterize the atmospheric band emission
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub></mrow><mfenced close=")" open="("><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>+</mo></msubsup><mo>-</mo><msup><mi>X</mi><mn mathvariant="normal">3</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>-</mo></msubsup></mrow></mfenced><mfenced close=")" open="("><mrow><mn mathvariant="normal">0</mn><mo>,</mo><mn mathvariant="normal">0</mn></mrow></mfenced></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="117pt" height="22pt" class="svg-formula" dspmath="mathimg" md5hash="02f40fbcac4d1696b0544259b8712360"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1207-2019-ie00002.svg" width="117pt" height="22pt" src="acp-19-1207-2019-ie00002.png"/></svg:svg></span></span>. This allows us to derive the atomic oxygen concentration from
nighttime observations of atmospheric band emission <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub></mrow><mfenced close=")" open="("><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>+</mo></msubsup><mo>-</mo><msup><mi>X</mi><mn mathvariant="normal">3</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>-</mo></msubsup></mrow></mfenced><mfenced close=")" open="("><mrow><mn mathvariant="normal">0</mn><mo>,</mo><mspace width="0.125em" linebreak="nobreak"/><mn mathvariant="normal">0</mn></mrow></mfenced></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="118pt" height="22pt" class="svg-formula" dspmath="mathimg" md5hash="1bba52d5e65e55fd0c192313ca591cdb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1207-2019-ie00003.svg" width="118pt" height="22pt" src="acp-19-1207-2019-ie00003.png"/></svg:svg></span></span>. The
derived empirical parameters can also be utilized for atmospheric band
modeling. Additionally, we derived the fit function and corresponding
coefficients for the combined (one- and two-step) mechanism. The simultaneous
common volume measurements of all the parameters involved in the theoretical
calculation of the observed <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub></mrow><mfenced close=")" open="("><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>+</mo></msubsup><mo>-</mo><msup><mi>X</mi><mn mathvariant="normal">3</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>-</mo></msubsup></mrow></mfenced><mfenced close=")" open="("><mrow><mn mathvariant="normal">0</mn><mo>,</mo><mspace width="0.125em" linebreak="nobreak"/><mn mathvariant="normal">0</mn></mrow></mfenced></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="118pt" height="22pt" class="svg-formula" dspmath="mathimg" md5hash="bfd2ab4f84219a19d95d236846513063"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1207-2019-ie00004.svg" width="118pt" height="22pt" src="acp-19-1207-2019-ie00004.png"/></svg:svg></span></span>
emission, i.e., temperature and density of the background air, atomic oxygen
density, and volume emission rate, is the novelty and the advantage of this
work.</p> |
---|---|
ISSN: | 1680-7316 1680-7324 |