New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization

Roberta Cavalli,1 Agnese Bisazza,1 Michele Trotta,1 Monica Argenziano,1 Andrea Civra,2 Manuela Donalisio,2 David Lembo21Department of Pharmaceutical Sciences and Technology; 2Department of Clinical and Biological Sciences University of Turin, Turin, ItalyBackground: The development of nonviral gene...

Full description

Bibliographic Details
Main Authors: Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M, Lembo D
Format: Article
Language:English
Published: Dove Medical Press 2012-06-01
Series:International Journal of Nanomedicine
Online Access:http://www.dovepress.com/new-chitosan-nanobubbles-for-ultrasound-mediated-gene-delivery-prepara-a10254
id doaj-10192dca53784ceb85c621a6ee5047f3
record_format Article
spelling doaj-10192dca53784ceb85c621a6ee5047f32020-11-24T22:52:43ZengDove Medical PressInternational Journal of Nanomedicine1176-91141178-20132012-06-012012default33093318New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterizationCavalli RBisazza ATrotta MArgenziano MCivra ADonalisio MLembo DRoberta Cavalli,1 Agnese Bisazza,1 Michele Trotta,1 Monica Argenziano,1 Andrea Civra,2 Manuela Donalisio,2 David Lembo21Department of Pharmaceutical Sciences and Technology; 2Department of Clinical and Biological Sciences University of Turin, Turin, ItalyBackground: The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release.Methods and results: Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions.Conclusion: Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery.Keywords: chitosan, nanobubbles, transfection, DNA, gene carrier, ultrasoundhttp://www.dovepress.com/new-chitosan-nanobubbles-for-ultrasound-mediated-gene-delivery-prepara-a10254
collection DOAJ
language English
format Article
sources DOAJ
author Cavalli R
Bisazza A
Trotta M
Argenziano M
Civra A
Donalisio M
Lembo D
spellingShingle Cavalli R
Bisazza A
Trotta M
Argenziano M
Civra A
Donalisio M
Lembo D
New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization
International Journal of Nanomedicine
author_facet Cavalli R
Bisazza A
Trotta M
Argenziano M
Civra A
Donalisio M
Lembo D
author_sort Cavalli R
title New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization
title_short New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization
title_full New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization
title_fullStr New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization
title_full_unstemmed New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization
title_sort new chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization
publisher Dove Medical Press
series International Journal of Nanomedicine
issn 1176-9114
1178-2013
publishDate 2012-06-01
description Roberta Cavalli,1 Agnese Bisazza,1 Michele Trotta,1 Monica Argenziano,1 Andrea Civra,2 Manuela Donalisio,2 David Lembo21Department of Pharmaceutical Sciences and Technology; 2Department of Clinical and Biological Sciences University of Turin, Turin, ItalyBackground: The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release.Methods and results: Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions.Conclusion: Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery.Keywords: chitosan, nanobubbles, transfection, DNA, gene carrier, ultrasound
url http://www.dovepress.com/new-chitosan-nanobubbles-for-ultrasound-mediated-gene-delivery-prepara-a10254
work_keys_str_mv AT cavallir newchitosannanobubblesforultrasoundmediatedgenedeliverypreparationandinvitrocharacterization
AT bisazzaa newchitosannanobubblesforultrasoundmediatedgenedeliverypreparationandinvitrocharacterization
AT trottam newchitosannanobubblesforultrasoundmediatedgenedeliverypreparationandinvitrocharacterization
AT argenzianom newchitosannanobubblesforultrasoundmediatedgenedeliverypreparationandinvitrocharacterization
AT civraa newchitosannanobubblesforultrasoundmediatedgenedeliverypreparationandinvitrocharacterization
AT donalisiom newchitosannanobubblesforultrasoundmediatedgenedeliverypreparationandinvitrocharacterization
AT lembod newchitosannanobubblesforultrasoundmediatedgenedeliverypreparationandinvitrocharacterization
_version_ 1725664829726785536