COOPERATIVE UAS LOCALIZATION USING LOWCOST SENSORS

Networks of small, low cost Unmanned Aerial Systems (UASs) have the potential to improve responsiveness and situational awareness across an increasing number of applications including defense, surveillance, mapping, search and rescue, disaster management, mineral exploration, assisted guidance and n...

Full description

Bibliographic Details
Main Authors: S. Goel, A. Kealy, B. Lohani
Format: Article
Language:English
Published: Copernicus Publications 2016-06-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-1/183/2016/isprs-annals-III-1-183-2016.pdf
id doaj-100870b58b1d439eb969fcb4c83b4416
record_format Article
spelling doaj-100870b58b1d439eb969fcb4c83b44162020-11-25T01:40:05ZengCopernicus PublicationsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2194-90422194-90502016-06-01III-118319010.5194/isprs-annals-III-1-183-2016COOPERATIVE UAS LOCALIZATION USING LOWCOST SENSORSS. Goel0A. Kealy1B. Lohani2Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, IndiaDepartment of Infrastructure Engineering, University Of Melbourne, VIC, AustraliaDepartment of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, IndiaNetworks of small, low cost Unmanned Aerial Systems (UASs) have the potential to improve responsiveness and situational awareness across an increasing number of applications including defense, surveillance, mapping, search and rescue, disaster management, mineral exploration, assisted guidance and navigation etc. These ad hoc UAS networks typically have the capability to communicate with each other and can share data between the individual UAS nodes. Thus these networks can operate as robust and efficient information acquisition platforms. For any of the applications involving UASs, a primary requirement is the localization i.e. determining the position and orientation of the UAS. The performance requirements of localization can vary with individual applications, for example: mapping applications need much higher localization accuracy as compared to the applications involving only surveillance. The sharing of appropriate data between UASs can prove to be advantageous when compared to a single UAS, in terms of improving the positioning accuracy and reliability particularly in partially or completely GNSS denied environments. This research aims to integrate low cost positioning sensors and cooperative localization technique for a network of UASs. Our hypothesis is that it is possible to achieve high accurate, real-time localization of each of the nodes in the network even with cheaper sensors if the nodes of the network share information among themselves. This hypothesis is validated using simulations and the results are analyzed both for centralized and distributed estimation architectures. At first, the results are studied for a two node network which is then expanded for a network containing more number of nodes. Having more nodes in the network allows us to study the properties of the network including the effect of size and shape of the network on accuracy of the nodes.http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-1/183/2016/isprs-annals-III-1-183-2016.pdf
collection DOAJ
language English
format Article
sources DOAJ
author S. Goel
A. Kealy
B. Lohani
spellingShingle S. Goel
A. Kealy
B. Lohani
COOPERATIVE UAS LOCALIZATION USING LOWCOST SENSORS
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
author_facet S. Goel
A. Kealy
B. Lohani
author_sort S. Goel
title COOPERATIVE UAS LOCALIZATION USING LOWCOST SENSORS
title_short COOPERATIVE UAS LOCALIZATION USING LOWCOST SENSORS
title_full COOPERATIVE UAS LOCALIZATION USING LOWCOST SENSORS
title_fullStr COOPERATIVE UAS LOCALIZATION USING LOWCOST SENSORS
title_full_unstemmed COOPERATIVE UAS LOCALIZATION USING LOWCOST SENSORS
title_sort cooperative uas localization using lowcost sensors
publisher Copernicus Publications
series ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
issn 2194-9042
2194-9050
publishDate 2016-06-01
description Networks of small, low cost Unmanned Aerial Systems (UASs) have the potential to improve responsiveness and situational awareness across an increasing number of applications including defense, surveillance, mapping, search and rescue, disaster management, mineral exploration, assisted guidance and navigation etc. These ad hoc UAS networks typically have the capability to communicate with each other and can share data between the individual UAS nodes. Thus these networks can operate as robust and efficient information acquisition platforms. For any of the applications involving UASs, a primary requirement is the localization i.e. determining the position and orientation of the UAS. The performance requirements of localization can vary with individual applications, for example: mapping applications need much higher localization accuracy as compared to the applications involving only surveillance. The sharing of appropriate data between UASs can prove to be advantageous when compared to a single UAS, in terms of improving the positioning accuracy and reliability particularly in partially or completely GNSS denied environments. This research aims to integrate low cost positioning sensors and cooperative localization technique for a network of UASs. Our hypothesis is that it is possible to achieve high accurate, real-time localization of each of the nodes in the network even with cheaper sensors if the nodes of the network share information among themselves. This hypothesis is validated using simulations and the results are analyzed both for centralized and distributed estimation architectures. At first, the results are studied for a two node network which is then expanded for a network containing more number of nodes. Having more nodes in the network allows us to study the properties of the network including the effect of size and shape of the network on accuracy of the nodes.
url http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-1/183/2016/isprs-annals-III-1-183-2016.pdf
work_keys_str_mv AT sgoel cooperativeuaslocalizationusinglowcostsensors
AT akealy cooperativeuaslocalizationusinglowcostsensors
AT blohani cooperativeuaslocalizationusinglowcostsensors
_version_ 1725047246711422976