An inverse Sturm-Liouviile problem for a Hill's equation
In this paper, we consider Hill's equation -y′′+q(x)y=λy, where q∈L¹[0,π]. A Hill equation defined on a semi-infinite interval will in general have a mixed spectrum. The continuous spectrum will in general consist of an infinite number of disjoint finite intervals. Between these intervals, poin...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2014-01-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19165 |
id |
doaj-0ff9f1b5540c43c89f950822e393d373 |
---|---|
record_format |
Article |
spelling |
doaj-0ff9f1b5540c43c89f950822e393d3732020-11-24T21:57:49ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882014-01-01321172510.5269/bspm.v32i1.191659090An inverse Sturm-Liouviile problem for a Hill's equationMunevver Tuz0Fırat University Department of MathematicsIn this paper, we consider Hill's equation -y′′+q(x)y=λy, where q∈L¹[0,π]. A Hill equation defined on a semi-infinite interval will in general have a mixed spectrum. The continuous spectrum will in general consist of an infinite number of disjoint finite intervals. Between these intervals, point eigenvalues can exist. It is shown that under suitable hypotheses on the spectrum a full knowledge of the spectrum leads to a unique determination of the potential function in the Hill's equation. Moreover , it is shown here that if q(x) is prescribed over the interval [(π/2),π], then a single spectrum suffices to determined q(x) on the interval [0,(π/2)].http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19165Hill's equationinverse problemspectrumpotentialuniqueness |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Munevver Tuz |
spellingShingle |
Munevver Tuz An inverse Sturm-Liouviile problem for a Hill's equation Boletim da Sociedade Paranaense de Matemática Hill's equation inverse problem spectrum potential uniqueness |
author_facet |
Munevver Tuz |
author_sort |
Munevver Tuz |
title |
An inverse Sturm-Liouviile problem for a Hill's equation |
title_short |
An inverse Sturm-Liouviile problem for a Hill's equation |
title_full |
An inverse Sturm-Liouviile problem for a Hill's equation |
title_fullStr |
An inverse Sturm-Liouviile problem for a Hill's equation |
title_full_unstemmed |
An inverse Sturm-Liouviile problem for a Hill's equation |
title_sort |
inverse sturm-liouviile problem for a hill's equation |
publisher |
Sociedade Brasileira de Matemática |
series |
Boletim da Sociedade Paranaense de Matemática |
issn |
0037-8712 2175-1188 |
publishDate |
2014-01-01 |
description |
In this paper, we consider Hill's equation -y′′+q(x)y=λy, where q∈L¹[0,π]. A Hill equation defined on a semi-infinite interval will in general have a mixed spectrum. The continuous spectrum will in general consist of an infinite number of disjoint finite intervals. Between these intervals, point eigenvalues can exist. It is shown that under suitable hypotheses on the spectrum a full knowledge of the spectrum leads to a unique determination of the potential function in the Hill's equation. Moreover , it is shown here that if q(x) is prescribed over the interval [(π/2),π], then a single spectrum suffices to determined q(x) on the interval [0,(π/2)]. |
topic |
Hill's equation inverse problem spectrum potential uniqueness |
url |
http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19165 |
work_keys_str_mv |
AT munevvertuz aninversesturmliouviileproblemforahillsequation AT munevvertuz inversesturmliouviileproblemforahillsequation |
_version_ |
1725853301550874624 |