An inverse Sturm-Liouviile problem for a Hill's equation

In this paper, we consider Hill's equation -y′′+q(x)y=λy, where q∈L¹[0,π]. A Hill equation defined on a semi-infinite interval will in general have a mixed spectrum. The continuous spectrum will in general consist of an infinite number of disjoint finite intervals. Between these intervals, poin...

Full description

Bibliographic Details
Main Author: Munevver Tuz
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2014-01-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19165
id doaj-0ff9f1b5540c43c89f950822e393d373
record_format Article
spelling doaj-0ff9f1b5540c43c89f950822e393d3732020-11-24T21:57:49ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882014-01-01321172510.5269/bspm.v32i1.191659090An inverse Sturm-Liouviile problem for a Hill's equationMunevver Tuz0Fırat University Department of MathematicsIn this paper, we consider Hill's equation -y′′+q(x)y=λy, where q∈L¹[0,π]. A Hill equation defined on a semi-infinite interval will in general have a mixed spectrum. The continuous spectrum will in general consist of an infinite number of disjoint finite intervals. Between these intervals, point eigenvalues can exist. It is shown that under suitable hypotheses on the spectrum a full knowledge of the spectrum leads to a unique determination of the potential function in the Hill's equation. Moreover , it is shown here that if q(x) is prescribed over the interval [(π/2),π], then a single spectrum suffices to determined q(x) on the interval [0,(π/2)].http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19165Hill's equationinverse problemspectrumpotentialuniqueness
collection DOAJ
language English
format Article
sources DOAJ
author Munevver Tuz
spellingShingle Munevver Tuz
An inverse Sturm-Liouviile problem for a Hill's equation
Boletim da Sociedade Paranaense de Matemática
Hill's equation
inverse problem
spectrum
potential
uniqueness
author_facet Munevver Tuz
author_sort Munevver Tuz
title An inverse Sturm-Liouviile problem for a Hill's equation
title_short An inverse Sturm-Liouviile problem for a Hill's equation
title_full An inverse Sturm-Liouviile problem for a Hill's equation
title_fullStr An inverse Sturm-Liouviile problem for a Hill's equation
title_full_unstemmed An inverse Sturm-Liouviile problem for a Hill's equation
title_sort inverse sturm-liouviile problem for a hill's equation
publisher Sociedade Brasileira de Matemática
series Boletim da Sociedade Paranaense de Matemática
issn 0037-8712
2175-1188
publishDate 2014-01-01
description In this paper, we consider Hill's equation -y′′+q(x)y=λy, where q∈L¹[0,π]. A Hill equation defined on a semi-infinite interval will in general have a mixed spectrum. The continuous spectrum will in general consist of an infinite number of disjoint finite intervals. Between these intervals, point eigenvalues can exist. It is shown that under suitable hypotheses on the spectrum a full knowledge of the spectrum leads to a unique determination of the potential function in the Hill's equation. Moreover , it is shown here that if q(x) is prescribed over the interval [(π/2),π], then a single spectrum suffices to determined q(x) on the interval [0,(π/2)].
topic Hill's equation
inverse problem
spectrum
potential
uniqueness
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19165
work_keys_str_mv AT munevvertuz aninversesturmliouviileproblemforahillsequation
AT munevvertuz inversesturmliouviileproblemforahillsequation
_version_ 1725853301550874624