Summary: | A multiphase numerical simulation of the steel-slag flow was established by using the volume of fluid (VOF) model to study the effect of different turbulence inhibitors on the improvement of the steel-slag flow in the tundish. The steel-slag interface fluctuation was studied by vorticity magnitude and transient fluctuation change. A prediction model of residence time distribution (RTD) curve was established based on mathematical simulation and the error of prediction model can be controlled below 6% by comparing with the hydraulic results. The results show that jet flow into the tundish generated very different flow patterns. Case 1 produced a double-roll flow pattern and case 2 produced a four-roll flow pattern in the impact area. The ratio of vorticity magnitude above 1.00 s<sup>−1</sup> near the ladle shroud was 2.60% in case 1 and the ratio of vorticity magnitude above 1.00 s<sup>−1</sup> near the ladle shroud was 13.15% in case 2, which indicates case 2 increased the possibility of slag entrainment via the upward flow mechanism and shear layer instability. Surface velocity fluctuations in case 2 were much more severe near the ladle shroud. The thickness of the slag layer was 60 mm, the interface fluctuation towards surface in case 2 was close to 20 mm. Meanwhile, case 1 involved very small volume-fraction contours near interface. The turbulence inhibitor with internal ripples (case 1) showed a better optimization effect and the results could provide a theoretical basis for the selection of a suitable turbulence inhibitor for the 66-ton T-type tundish.
|