Enhancing geophysical flow machine learning performance via scale separation

<p>Recent advances in statistical and machine learning have opened the possibility of forecasting the behaviour of chaotic systems using recurrent neural networks. In this article we investigate the applicability of such a framework to geophysical flows, known to involve multiple scales in len...

Full description

Bibliographic Details
Main Authors: D. Faranda, M. Vrac, P. Yiou, F. M. E. Pons, A. Hamid, G. Carella, C. Ngoungue Langue, S. Thao, V. Gautard
Format: Article
Language:English
Published: Copernicus Publications 2021-09-01
Series:Nonlinear Processes in Geophysics
Online Access:https://npg.copernicus.org/articles/28/423/2021/npg-28-423-2021.pdf
id doaj-0fd514d9bdc14187829eb4cca3f131a1
record_format Article
spelling doaj-0fd514d9bdc14187829eb4cca3f131a12021-09-10T12:53:11ZengCopernicus PublicationsNonlinear Processes in Geophysics1023-58091607-79462021-09-012842344310.5194/npg-28-423-2021Enhancing geophysical flow machine learning performance via scale separationD. Faranda0D. Faranda1D. Faranda2M. Vrac3P. Yiou4F. M. E. Pons5A. Hamid6G. Carella7C. Ngoungue Langue8S. Thao9V. Gautard10Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLondon Mathematical Laboratory, 8 Margravine Gardens, London, W68RH, UKLMD/IPSL, Ecole Normale Superieure, PSL research University, Paris, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceDRF/IRFU/DEDIP//LILAS Departement d'Electronique des Detecteurs et d'Informatique pour la Physique, CE Saclay l'Orme des Merisiers, 91191 Gif-sur-Yvette, France.<p>Recent advances in statistical and machine learning have opened the possibility of forecasting the behaviour of chaotic systems using recurrent neural networks. In this article we investigate the applicability of such a framework to geophysical flows, known to involve multiple scales in length, time and energy and to feature intermittency. We show that both multiscale dynamics and intermittency introduce severe limitations to the applicability of recurrent neural networks, both for short-term forecasts as well as for the reconstruction of the underlying attractor. We suggest that possible strategies to overcome such limitations should be based on separating the smooth large-scale dynamics from the intermittent/small-scale features. We test these ideas on global sea-level pressure data for the past 40 years, a proxy of the atmospheric circulation dynamics. Better short- and long-term forecasts of sea-level pressure data can be obtained with an optimal choice of spatial coarse graining and time filtering.</p>https://npg.copernicus.org/articles/28/423/2021/npg-28-423-2021.pdf
collection DOAJ
language English
format Article
sources DOAJ
author D. Faranda
D. Faranda
D. Faranda
M. Vrac
P. Yiou
F. M. E. Pons
A. Hamid
G. Carella
C. Ngoungue Langue
S. Thao
V. Gautard
spellingShingle D. Faranda
D. Faranda
D. Faranda
M. Vrac
P. Yiou
F. M. E. Pons
A. Hamid
G. Carella
C. Ngoungue Langue
S. Thao
V. Gautard
Enhancing geophysical flow machine learning performance via scale separation
Nonlinear Processes in Geophysics
author_facet D. Faranda
D. Faranda
D. Faranda
M. Vrac
P. Yiou
F. M. E. Pons
A. Hamid
G. Carella
C. Ngoungue Langue
S. Thao
V. Gautard
author_sort D. Faranda
title Enhancing geophysical flow machine learning performance via scale separation
title_short Enhancing geophysical flow machine learning performance via scale separation
title_full Enhancing geophysical flow machine learning performance via scale separation
title_fullStr Enhancing geophysical flow machine learning performance via scale separation
title_full_unstemmed Enhancing geophysical flow machine learning performance via scale separation
title_sort enhancing geophysical flow machine learning performance via scale separation
publisher Copernicus Publications
series Nonlinear Processes in Geophysics
issn 1023-5809
1607-7946
publishDate 2021-09-01
description <p>Recent advances in statistical and machine learning have opened the possibility of forecasting the behaviour of chaotic systems using recurrent neural networks. In this article we investigate the applicability of such a framework to geophysical flows, known to involve multiple scales in length, time and energy and to feature intermittency. We show that both multiscale dynamics and intermittency introduce severe limitations to the applicability of recurrent neural networks, both for short-term forecasts as well as for the reconstruction of the underlying attractor. We suggest that possible strategies to overcome such limitations should be based on separating the smooth large-scale dynamics from the intermittent/small-scale features. We test these ideas on global sea-level pressure data for the past 40 years, a proxy of the atmospheric circulation dynamics. Better short- and long-term forecasts of sea-level pressure data can be obtained with an optimal choice of spatial coarse graining and time filtering.</p>
url https://npg.copernicus.org/articles/28/423/2021/npg-28-423-2021.pdf
work_keys_str_mv AT dfaranda enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT dfaranda enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT dfaranda enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT mvrac enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT pyiou enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT fmepons enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT ahamid enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT gcarella enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT cngounguelangue enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT sthao enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
AT vgautard enhancinggeophysicalflowmachinelearningperformanceviascaleseparation
_version_ 1717757689019236352