Enhancing geophysical flow machine learning performance via scale separation
<p>Recent advances in statistical and machine learning have opened the possibility of forecasting the behaviour of chaotic systems using recurrent neural networks. In this article we investigate the applicability of such a framework to geophysical flows, known to involve multiple scales in len...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-09-01
|
Series: | Nonlinear Processes in Geophysics |
Online Access: | https://npg.copernicus.org/articles/28/423/2021/npg-28-423-2021.pdf |
id |
doaj-0fd514d9bdc14187829eb4cca3f131a1 |
---|---|
record_format |
Article |
spelling |
doaj-0fd514d9bdc14187829eb4cca3f131a12021-09-10T12:53:11ZengCopernicus PublicationsNonlinear Processes in Geophysics1023-58091607-79462021-09-012842344310.5194/npg-28-423-2021Enhancing geophysical flow machine learning performance via scale separationD. Faranda0D. Faranda1D. Faranda2M. Vrac3P. Yiou4F. M. E. Pons5A. Hamid6G. Carella7C. Ngoungue Langue8S. Thao9V. Gautard10Laboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLondon Mathematical Laboratory, 8 Margravine Gardens, London, W68RH, UKLMD/IPSL, Ecole Normale Superieure, PSL research University, Paris, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l'Environnement, CE Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191 Gif-sur-Yvette, FranceDRF/IRFU/DEDIP//LILAS Departement d'Electronique des Detecteurs et d'Informatique pour la Physique, CE Saclay l'Orme des Merisiers, 91191 Gif-sur-Yvette, France.<p>Recent advances in statistical and machine learning have opened the possibility of forecasting the behaviour of chaotic systems using recurrent neural networks. In this article we investigate the applicability of such a framework to geophysical flows, known to involve multiple scales in length, time and energy and to feature intermittency. We show that both multiscale dynamics and intermittency introduce severe limitations to the applicability of recurrent neural networks, both for short-term forecasts as well as for the reconstruction of the underlying attractor. We suggest that possible strategies to overcome such limitations should be based on separating the smooth large-scale dynamics from the intermittent/small-scale features. We test these ideas on global sea-level pressure data for the past 40 years, a proxy of the atmospheric circulation dynamics. Better short- and long-term forecasts of sea-level pressure data can be obtained with an optimal choice of spatial coarse graining and time filtering.</p>https://npg.copernicus.org/articles/28/423/2021/npg-28-423-2021.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
D. Faranda D. Faranda D. Faranda M. Vrac P. Yiou F. M. E. Pons A. Hamid G. Carella C. Ngoungue Langue S. Thao V. Gautard |
spellingShingle |
D. Faranda D. Faranda D. Faranda M. Vrac P. Yiou F. M. E. Pons A. Hamid G. Carella C. Ngoungue Langue S. Thao V. Gautard Enhancing geophysical flow machine learning performance via scale separation Nonlinear Processes in Geophysics |
author_facet |
D. Faranda D. Faranda D. Faranda M. Vrac P. Yiou F. M. E. Pons A. Hamid G. Carella C. Ngoungue Langue S. Thao V. Gautard |
author_sort |
D. Faranda |
title |
Enhancing geophysical flow machine learning performance via scale separation |
title_short |
Enhancing geophysical flow machine learning performance via scale separation |
title_full |
Enhancing geophysical flow machine learning performance via scale separation |
title_fullStr |
Enhancing geophysical flow machine learning performance via scale separation |
title_full_unstemmed |
Enhancing geophysical flow machine learning performance via scale separation |
title_sort |
enhancing geophysical flow machine learning performance via scale separation |
publisher |
Copernicus Publications |
series |
Nonlinear Processes in Geophysics |
issn |
1023-5809 1607-7946 |
publishDate |
2021-09-01 |
description |
<p>Recent advances in statistical and machine learning have opened the possibility of forecasting the behaviour of chaotic systems using recurrent neural networks. In this article we investigate the applicability of such a framework to geophysical flows, known to involve multiple scales in length, time and energy and to feature intermittency. We show that both multiscale dynamics and intermittency introduce severe limitations to the applicability of recurrent neural networks, both for short-term forecasts as well as for the reconstruction of the underlying attractor. We suggest that possible strategies to overcome such limitations should be based on separating the smooth large-scale dynamics from the intermittent/small-scale features. We test these ideas on global sea-level pressure data for the past 40 years, a proxy of the atmospheric circulation dynamics. Better short- and long-term forecasts of sea-level pressure data can be obtained with an optimal choice of spatial coarse graining and time filtering.</p> |
url |
https://npg.copernicus.org/articles/28/423/2021/npg-28-423-2021.pdf |
work_keys_str_mv |
AT dfaranda enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT dfaranda enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT dfaranda enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT mvrac enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT pyiou enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT fmepons enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT ahamid enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT gcarella enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT cngounguelangue enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT sthao enhancinggeophysicalflowmachinelearningperformanceviascaleseparation AT vgautard enhancinggeophysicalflowmachinelearningperformanceviascaleseparation |
_version_ |
1717757689019236352 |