Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency
Abstract Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-01-01
|
Series: | Nano-Micro Letters |
Subjects: | |
Online Access: | https://doi.org/10.1007/s40820-020-00566-3 |
Summary: | Abstract Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq−1 (minimum value: 32 Ω sq−1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability. |
---|---|
ISSN: | 2311-6706 2150-5551 |