Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain

There are only a few examples of nanocarriers that can transport bioactive substances across the blood-brain barrier. Here the authors show that by rapid glycaemic increase the accumulation of a glucosylated nanocarrier in the brain can be controlled.

Bibliographic Details
Main Authors: Y. Anraku, H. Kuwahara, Y. Fukusato, A. Mizoguchi, T. Ishii, K. Nitta, Y. Matsumoto, K. Toh, K. Miyata, S. Uchida, K. Nishina, K. Osada, K. Itaka, N. Nishiyama, H. Mizusawa, T. Yamasoba, T. Yokota, K. Kataoka
Format: Article
Language:English
Published: Nature Publishing Group 2017-10-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-017-00952-3
Description
Summary:There are only a few examples of nanocarriers that can transport bioactive substances across the blood-brain barrier. Here the authors show that by rapid glycaemic increase the accumulation of a glucosylated nanocarrier in the brain can be controlled.
ISSN:2041-1723