An Improved Unmixing-Based Fusion Method: Potential Application to Remote Monitoring of Inland Waters
Although remote sensing technology has been widely used to monitor inland water bodies; the lack of suitable data with high spatial and spectral resolution has severely obstructed its practical development. The objective of this study is to improve the unmixing-based fusion (UBF) method to produce...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-02-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-4292/7/2/1640 |
Summary: | Although remote sensing technology has been widely used to monitor inland water bodies; the lack of suitable data with high spatial and spectral resolution has severely obstructed its practical development. The objective of this study is to improve the unmixing-based fusion (UBF) method to produce fused images that maintain both spectral and spatial information from the original images. Images from Environmental Satellite 1 (HJ1) and Medium Resolution Imaging Spectrometer (MERIS) were used in this study to validate the method. An improved UBF (IUBF) algorithm is established by selecting a proper HJ1-CCD image band for each MERIS band and thereafter applying an unsupervised classification method in each sliding window. Viewing in the visual sense—the radiance and the spectrum—the results show that the improved method effectively yields images with the spatial resolution of the HJ1-CCD image and the spectrum resolution of the MERIS image. When validated using two datasets; the ERGAS index (Relative Dimensionless Global Error) indicates that IUBF is more robust than UBF. Finally, the fused data were applied to evaluate the chlorophyll a concentrations (Cchla) in Taihu Lake. The result shows that the Cchla map obtained by IUBF fusion captures more detailed information than that of MERIS. |
---|---|
ISSN: | 2072-4292 |