Experimental Investigation of Propeller Induced Flow on Flying Wing Micro Aerial Vehicle for Improved 6DOF Modeling

In this research effect of propeller induced flow on aerodynamic characteristics of low aspect ratio flying wing micro aerial vehicle has been investigated experimentally in subsonic wind tunnel. Left turning tendencies of right-handed propellers have been discussed in literature, but not much work...

Full description

Bibliographic Details
Main Authors: Taimur Ali Shams, Syed Irtiza Ali Shah, Aamer Shahzad, Ali Javed, Kashif Mehmod
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9204710/
Description
Summary:In this research effect of propeller induced flow on aerodynamic characteristics of low aspect ratio flying wing micro aerial vehicle has been investigated experimentally in subsonic wind tunnel. Left turning tendencies of right-handed propellers have been discussed in literature, but not much work has been done to quantify them. In this research, we have quantified these tendencies as a change in aerodynamic coefficient with a change in advance ratio at a longitudinal trim angle of attack using subsonic wind tunnel. For experimental testing, three fixed pitch propeller diameters (5 inch, 6 inch and 7 inch), three propeller rotational speeds (7800, 10800 and 12300 RPMs) and three wind tunnel speeds (10, 15 and 20 m/s) have been considered to form up 27 advance ratios. Additionally, wind tunnel tests of 9 wind mill cases were conducted and considered as baseline. Experimental uncertainty assessment for measurement of forces and moments was carried out before conduct of wind tunnel tests. Large variation in lift, drag, yawing moment and rolling moment was captured at low advance ratios, which indicated their significance at high propeller rotational speeds and large propeller diameters. Side force and pitching moment did not reflect any significant change. L/D at trim point was found a nonlinear function of propeller diameter to wingspan ratio D/b, and propeller rotational speed. Rate and control derivatives were obtained using unsteady vortex lattice method with propeller induced flow effect modeled by Helical Vortex Modeling approach. In this research, we have proposed improved 6-DOF equations of motion, with a contribution of advance ratio J. It is concluded, that propeller induced flow effects have a significant contribution in flight dynamic modeling for vehicles with large propeller diameter to wingspan ratio, D/b of 22% or more.
ISSN:2169-3536