Contributo alle iperstrutture matroidali

In this paper we continue the investigation of matroidal hyperstructures, introduced in [8], [9], [15], [17], [22]. In the first section, we define the sub-hypergroupoid <em>[A]</em> generated by a subset <em>A</em> of an hypergroupoid<em> (H, •)</em>.  We introdu...

Full description

Bibliographic Details
Main Author: Domenico Freni
Format: Article
Language:English
Published: Università degli Studi di Catania 1997-11-01
Series:Le Matematiche
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/408
id doaj-0f8ed9b98dad488eb811795d6eff4bc8
record_format Article
spelling doaj-0f8ed9b98dad488eb811795d6eff4bc82020-11-25T01:24:13ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981997-11-01522271295380Contributo alle iperstrutture matroidaliDomenico FreniIn this paper we continue the investigation of matroidal hyperstructures, introduced in [8], [9], [15], [17], [22]. In the first section, we define the sub-hypergroupoid <em>[A]</em> generated by a subset <em>A</em> of an hypergroupoid<em> (H, •)</em>.  We introduce the notion of defect and optimal defect of <em>[A]</em> and nvestigate their properties.<br />In the following sections, we define the class of<em> M_λ -hypergroups</em>, attached to an action of a group on a set <em>M</em> . We give necessary, and necessary and sufficient conditions for a<em> M_λ -hypergroupoid</em> to be matroidal. The most significant case is given by the canonical action of the multiplicative group<em> K^∗</em> of a field<em> K</em> on the set<em> V − {0}</em>, where <em>V</em> is a <em>K</em>-vector space. Moreover, we determine necessary conditions under which the defect of a sub-hypergroupoid <em>[A]</em> of a <em>M_λ -hypergroupoid</em> is optimal; we also give examples of non-commutative matroidal hypergroupoids.<br />      In the last section, we continue the investigation of finite non-commutative exchange groups.<br />http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/408
collection DOAJ
language English
format Article
sources DOAJ
author Domenico Freni
spellingShingle Domenico Freni
Contributo alle iperstrutture matroidali
Le Matematiche
author_facet Domenico Freni
author_sort Domenico Freni
title Contributo alle iperstrutture matroidali
title_short Contributo alle iperstrutture matroidali
title_full Contributo alle iperstrutture matroidali
title_fullStr Contributo alle iperstrutture matroidali
title_full_unstemmed Contributo alle iperstrutture matroidali
title_sort contributo alle iperstrutture matroidali
publisher Università degli Studi di Catania
series Le Matematiche
issn 0373-3505
2037-5298
publishDate 1997-11-01
description In this paper we continue the investigation of matroidal hyperstructures, introduced in [8], [9], [15], [17], [22]. In the first section, we define the sub-hypergroupoid <em>[A]</em> generated by a subset <em>A</em> of an hypergroupoid<em> (H, •)</em>.  We introduce the notion of defect and optimal defect of <em>[A]</em> and nvestigate their properties.<br />In the following sections, we define the class of<em> M_λ -hypergroups</em>, attached to an action of a group on a set <em>M</em> . We give necessary, and necessary and sufficient conditions for a<em> M_λ -hypergroupoid</em> to be matroidal. The most significant case is given by the canonical action of the multiplicative group<em> K^∗</em> of a field<em> K</em> on the set<em> V − {0}</em>, where <em>V</em> is a <em>K</em>-vector space. Moreover, we determine necessary conditions under which the defect of a sub-hypergroupoid <em>[A]</em> of a <em>M_λ -hypergroupoid</em> is optimal; we also give examples of non-commutative matroidal hypergroupoids.<br />      In the last section, we continue the investigation of finite non-commutative exchange groups.<br />
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/408
work_keys_str_mv AT domenicofreni contributoalleiperstrutturematroidali
_version_ 1725118217092857856