Contributo alle iperstrutture matroidali
In this paper we continue the investigation of matroidal hyperstructures, introduced in [8], [9], [15], [17], [22]. In the first section, we define the sub-hypergroupoid <em>[A]</em> generated by a subset <em>A</em> of an hypergroupoid<em> (H, •)</em>. We introdu...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
1997-11-01
|
Series: | Le Matematiche |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/408 |
id |
doaj-0f8ed9b98dad488eb811795d6eff4bc8 |
---|---|
record_format |
Article |
spelling |
doaj-0f8ed9b98dad488eb811795d6eff4bc82020-11-25T01:24:13ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981997-11-01522271295380Contributo alle iperstrutture matroidaliDomenico FreniIn this paper we continue the investigation of matroidal hyperstructures, introduced in [8], [9], [15], [17], [22]. In the first section, we define the sub-hypergroupoid <em>[A]</em> generated by a subset <em>A</em> of an hypergroupoid<em> (H, •)</em>. We introduce the notion of defect and optimal defect of <em>[A]</em> and nvestigate their properties.<br />In the following sections, we define the class of<em> M_λ -hypergroups</em>, attached to an action of a group on a set <em>M</em> . We give necessary, and necessary and sufficient conditions for a<em> M_λ -hypergroupoid</em> to be matroidal. The most significant case is given by the canonical action of the multiplicative group<em> K^∗</em> of a field<em> K</em> on the set<em> V − {0}</em>, where <em>V</em> is a <em>K</em>-vector space. Moreover, we determine necessary conditions under which the defect of a sub-hypergroupoid <em>[A]</em> of a <em>M_λ -hypergroupoid</em> is optimal; we also give examples of non-commutative matroidal hypergroupoids.<br /> In the last section, we continue the investigation of finite non-commutative exchange groups.<br />http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/408 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Domenico Freni |
spellingShingle |
Domenico Freni Contributo alle iperstrutture matroidali Le Matematiche |
author_facet |
Domenico Freni |
author_sort |
Domenico Freni |
title |
Contributo alle iperstrutture matroidali |
title_short |
Contributo alle iperstrutture matroidali |
title_full |
Contributo alle iperstrutture matroidali |
title_fullStr |
Contributo alle iperstrutture matroidali |
title_full_unstemmed |
Contributo alle iperstrutture matroidali |
title_sort |
contributo alle iperstrutture matroidali |
publisher |
Università degli Studi di Catania |
series |
Le Matematiche |
issn |
0373-3505 2037-5298 |
publishDate |
1997-11-01 |
description |
In this paper we continue the investigation of matroidal hyperstructures, introduced in [8], [9], [15], [17], [22]. In the first section, we define the sub-hypergroupoid <em>[A]</em> generated by a subset <em>A</em> of an hypergroupoid<em> (H, •)</em>. We introduce the notion of defect and optimal defect of <em>[A]</em> and nvestigate their properties.<br />In the following sections, we define the class of<em> M_λ -hypergroups</em>, attached to an action of a group on a set <em>M</em> . We give necessary, and necessary and sufficient conditions for a<em> M_λ -hypergroupoid</em> to be matroidal. The most significant case is given by the canonical action of the multiplicative group<em> K^∗</em> of a field<em> K</em> on the set<em> V − {0}</em>, where <em>V</em> is a <em>K</em>-vector space. Moreover, we determine necessary conditions under which the defect of a sub-hypergroupoid <em>[A]</em> of a <em>M_λ -hypergroupoid</em> is optimal; we also give examples of non-commutative matroidal hypergroupoids.<br /> In the last section, we continue the investigation of finite non-commutative exchange groups.<br /> |
url |
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/408 |
work_keys_str_mv |
AT domenicofreni contributoalleiperstrutturematroidali |
_version_ |
1725118217092857856 |