Renormalized self-intersection local time of bifractional Brownian motion
Abstract Let BH,K={BH,K(t),t≥0} $B^{H,K}=\{B^{H,K}(t), t \geq 0\}$ be a d-dimensional bifractional Brownian motion with Hurst parameters H∈(0,1) $H\in (0,1)$ and K∈(0,1] $K\in (0,1]$. Assuming d≥2 $d\geq 2$, we prove that the renormalized self-intersection local time ∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt−E(∫...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-11-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-018-1916-3 |
id |
doaj-0f8cf65775584052a3b86a7331cee3bb |
---|---|
record_format |
Article |
spelling |
doaj-0f8cf65775584052a3b86a7331cee3bb2020-11-25T00:44:07ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-11-012018112010.1186/s13660-018-1916-3Renormalized self-intersection local time of bifractional Brownian motionZhenlong Chen0Liheng Sang1Xiaozhen Hao2School of Statistics and Mathematics, Zhejiang Gongshang UniversitySchool of Statistics and Mathematics, Zhejiang Gongshang UniversitySchool of Statistics and Mathematics, Zhejiang Gongshang UniversityAbstract Let BH,K={BH,K(t),t≥0} $B^{H,K}=\{B^{H,K}(t), t \geq 0\}$ be a d-dimensional bifractional Brownian motion with Hurst parameters H∈(0,1) $H\in (0,1)$ and K∈(0,1] $K\in (0,1]$. Assuming d≥2 $d\geq 2$, we prove that the renormalized self-intersection local time ∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt−E(∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt) $$\begin{aligned} \int^{T}_{0} \int^{t}_{0}\delta \bigl(B^{H,K}(t)-B^{H,K}(s) \bigr)\,ds\,dt-\mathbb{E} \biggl( \int^{T}_{0} \int^{t}_{0}\delta \bigl(B^{H,K}(t)-B^{H,K}(s) \bigr)\,ds\,dt \biggr) \end{aligned}$$ exists in L2 $L^{2}$ if and only if HKd<3/2 $HKd< 3/2$, where δ denotes the Dirac delta function. Our work generalizes the result of the renormalized self-intersection local time for fractional Brownian motion.http://link.springer.com/article/10.1186/s13660-018-1916-3Bifractional Brownian motionSelf-intersection local timeRenormalizationExistence |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhenlong Chen Liheng Sang Xiaozhen Hao |
spellingShingle |
Zhenlong Chen Liheng Sang Xiaozhen Hao Renormalized self-intersection local time of bifractional Brownian motion Journal of Inequalities and Applications Bifractional Brownian motion Self-intersection local time Renormalization Existence |
author_facet |
Zhenlong Chen Liheng Sang Xiaozhen Hao |
author_sort |
Zhenlong Chen |
title |
Renormalized self-intersection local time of bifractional Brownian motion |
title_short |
Renormalized self-intersection local time of bifractional Brownian motion |
title_full |
Renormalized self-intersection local time of bifractional Brownian motion |
title_fullStr |
Renormalized self-intersection local time of bifractional Brownian motion |
title_full_unstemmed |
Renormalized self-intersection local time of bifractional Brownian motion |
title_sort |
renormalized self-intersection local time of bifractional brownian motion |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2018-11-01 |
description |
Abstract Let BH,K={BH,K(t),t≥0} $B^{H,K}=\{B^{H,K}(t), t \geq 0\}$ be a d-dimensional bifractional Brownian motion with Hurst parameters H∈(0,1) $H\in (0,1)$ and K∈(0,1] $K\in (0,1]$. Assuming d≥2 $d\geq 2$, we prove that the renormalized self-intersection local time ∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt−E(∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt) $$\begin{aligned} \int^{T}_{0} \int^{t}_{0}\delta \bigl(B^{H,K}(t)-B^{H,K}(s) \bigr)\,ds\,dt-\mathbb{E} \biggl( \int^{T}_{0} \int^{t}_{0}\delta \bigl(B^{H,K}(t)-B^{H,K}(s) \bigr)\,ds\,dt \biggr) \end{aligned}$$ exists in L2 $L^{2}$ if and only if HKd<3/2 $HKd< 3/2$, where δ denotes the Dirac delta function. Our work generalizes the result of the renormalized self-intersection local time for fractional Brownian motion. |
topic |
Bifractional Brownian motion Self-intersection local time Renormalization Existence |
url |
http://link.springer.com/article/10.1186/s13660-018-1916-3 |
work_keys_str_mv |
AT zhenlongchen renormalizedselfintersectionlocaltimeofbifractionalbrownianmotion AT lihengsang renormalizedselfintersectionlocaltimeofbifractionalbrownianmotion AT xiaozhenhao renormalizedselfintersectionlocaltimeofbifractionalbrownianmotion |
_version_ |
1725276391607369728 |