Renormalized self-intersection local time of bifractional Brownian motion

Abstract Let BH,K={BH,K(t),t≥0} $B^{H,K}=\{B^{H,K}(t), t \geq 0\}$ be a d-dimensional bifractional Brownian motion with Hurst parameters H∈(0,1) $H\in (0,1)$ and K∈(0,1] $K\in (0,1]$. Assuming d≥2 $d\geq 2$, we prove that the renormalized self-intersection local time ∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt−E(∫...

Full description

Bibliographic Details
Main Authors: Zhenlong Chen, Liheng Sang, Xiaozhen Hao
Format: Article
Language:English
Published: SpringerOpen 2018-11-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1916-3
id doaj-0f8cf65775584052a3b86a7331cee3bb
record_format Article
spelling doaj-0f8cf65775584052a3b86a7331cee3bb2020-11-25T00:44:07ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-11-012018112010.1186/s13660-018-1916-3Renormalized self-intersection local time of bifractional Brownian motionZhenlong Chen0Liheng Sang1Xiaozhen Hao2School of Statistics and Mathematics, Zhejiang Gongshang UniversitySchool of Statistics and Mathematics, Zhejiang Gongshang UniversitySchool of Statistics and Mathematics, Zhejiang Gongshang UniversityAbstract Let BH,K={BH,K(t),t≥0} $B^{H,K}=\{B^{H,K}(t), t \geq 0\}$ be a d-dimensional bifractional Brownian motion with Hurst parameters H∈(0,1) $H\in (0,1)$ and K∈(0,1] $K\in (0,1]$. Assuming d≥2 $d\geq 2$, we prove that the renormalized self-intersection local time ∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt−E(∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt) $$\begin{aligned} \int^{T}_{0} \int^{t}_{0}\delta \bigl(B^{H,K}(t)-B^{H,K}(s) \bigr)\,ds\,dt-\mathbb{E} \biggl( \int^{T}_{0} \int^{t}_{0}\delta \bigl(B^{H,K}(t)-B^{H,K}(s) \bigr)\,ds\,dt \biggr) \end{aligned}$$ exists in L2 $L^{2}$ if and only if HKd<3/2 $HKd< 3/2$, where δ denotes the Dirac delta function. Our work generalizes the result of the renormalized self-intersection local time for fractional Brownian motion.http://link.springer.com/article/10.1186/s13660-018-1916-3Bifractional Brownian motionSelf-intersection local timeRenormalizationExistence
collection DOAJ
language English
format Article
sources DOAJ
author Zhenlong Chen
Liheng Sang
Xiaozhen Hao
spellingShingle Zhenlong Chen
Liheng Sang
Xiaozhen Hao
Renormalized self-intersection local time of bifractional Brownian motion
Journal of Inequalities and Applications
Bifractional Brownian motion
Self-intersection local time
Renormalization
Existence
author_facet Zhenlong Chen
Liheng Sang
Xiaozhen Hao
author_sort Zhenlong Chen
title Renormalized self-intersection local time of bifractional Brownian motion
title_short Renormalized self-intersection local time of bifractional Brownian motion
title_full Renormalized self-intersection local time of bifractional Brownian motion
title_fullStr Renormalized self-intersection local time of bifractional Brownian motion
title_full_unstemmed Renormalized self-intersection local time of bifractional Brownian motion
title_sort renormalized self-intersection local time of bifractional brownian motion
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2018-11-01
description Abstract Let BH,K={BH,K(t),t≥0} $B^{H,K}=\{B^{H,K}(t), t \geq 0\}$ be a d-dimensional bifractional Brownian motion with Hurst parameters H∈(0,1) $H\in (0,1)$ and K∈(0,1] $K\in (0,1]$. Assuming d≥2 $d\geq 2$, we prove that the renormalized self-intersection local time ∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt−E(∫0T∫0tδ(BH,K(t)−BH,K(s))dsdt) $$\begin{aligned} \int^{T}_{0} \int^{t}_{0}\delta \bigl(B^{H,K}(t)-B^{H,K}(s) \bigr)\,ds\,dt-\mathbb{E} \biggl( \int^{T}_{0} \int^{t}_{0}\delta \bigl(B^{H,K}(t)-B^{H,K}(s) \bigr)\,ds\,dt \biggr) \end{aligned}$$ exists in L2 $L^{2}$ if and only if HKd<3/2 $HKd< 3/2$, where δ denotes the Dirac delta function. Our work generalizes the result of the renormalized self-intersection local time for fractional Brownian motion.
topic Bifractional Brownian motion
Self-intersection local time
Renormalization
Existence
url http://link.springer.com/article/10.1186/s13660-018-1916-3
work_keys_str_mv AT zhenlongchen renormalizedselfintersectionlocaltimeofbifractionalbrownianmotion
AT lihengsang renormalizedselfintersectionlocaltimeofbifractionalbrownianmotion
AT xiaozhenhao renormalizedselfintersectionlocaltimeofbifractionalbrownianmotion
_version_ 1725276391607369728