Selected-area growth of nickel micropillars on aluminum thin films by electroless plating for applications in microbolometers

An optimization process of electroless plating of nickel was carried out with NiCl2 as the nickel ion source, NaH2PO2 as the reduction agent, CH3COONa and Na3C6H5O7 as complexing agents. Electroless plated nickel layers on sputtered aluminum corning glass substrates with a resistivity of about 75.9 ...

Full description

Bibliographic Details
Main Authors: Do Ngoc Hieu, Dang Nguyen Ha My, Vu Thi Thu, Nguyen Quoc Hung, Do Ngoc Chung, Nguyen-Tran Thuat
Format: Article
Language:English
Published: Elsevier 2017-06-01
Series:Journal of Science: Advanced Materials and Devices
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S246821791730045X
Description
Summary:An optimization process of electroless plating of nickel was carried out with NiCl2 as the nickel ion source, NaH2PO2 as the reduction agent, CH3COONa and Na3C6H5O7 as complexing agents. Electroless plated nickel layers on sputtered aluminum corning glass substrates with a resistivity of about 75.9 μΩ cm and a nickel concentration higher than 93% were obtained. This optimum process was successfully applied in growing nickel micropillars at selected areas with a well-controlled height. The microstructure of the masking layers was fabricated by means of optical photolithography for subsequent growth of nickel micropillars on selected areas. Micropillars size was defined by the opening size and the height was controlled by adjusting the plating time at a growth rate of 0.41 μm/min. This result shows that electroless nickel plating could be a good candidate for growing micropillars for applications in microbolometers.
ISSN:2468-2179