A new regularity criterion for the Navier-Stokes equations in terms of the two components of the velocity

This paper establishes a new regularity criterion for the Navier-Stokes equation in terms of two velocity components. We show that if the two velocity components $\widetilde{u}=\left( u_{1},u_{2},0\right) $ satisfy \begin{equation*} \int_{0}^{T}\Vert \tilde{u}(s)\Vert _{\dot{B}_{\infty ,\infty }...

Full description

Bibliographic Details
Main Authors: Sadek Gala, Maria Ragusa
Format: Article
Language:English
Published: University of Szeged 2016-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4452
Description
Summary:This paper establishes a new regularity criterion for the Navier-Stokes equation in terms of two velocity components. We show that if the two velocity components $\widetilde{u}=\left( u_{1},u_{2},0\right) $ satisfy \begin{equation*} \int_{0}^{T}\Vert \tilde{u}(s)\Vert _{\dot{B}_{\infty ,\infty }^{0}}^{2}ds<\infty , \end{equation*} then the solution can be smoothly extended after $t=T$. This gives an aswer to an open problem in [B. Q. Dong, Z. Zhang, Nonlinear Anal. Real World Appl. 11(2010), 2415-2421].
ISSN:1417-3875
1417-3875