Summary: | Effective and efficient routing is one of the most important parts of routing in NoC-based neuromorphic systems. In fact, this communication structure connects different units through the packets routed by routers and switches embedded in the network on a chip. With the help of this capability, not only high scalability and high development can be created, but by decreasing the global wiring to the chip level, power consumption can be reduced. In this paper, an adaptive routing algorithm for NoC-based neuromorphic systems is proposed along with a hybrid selection strategy. Accordingly, a traffic analyzer is first used to determine the type of local or nonlocal traffic depending on the number of hops. Then, considering the type of traffic, the RCA and NoP selection strategies are used for the nonlocal and local strategies, respectively. Finally, using the experiments that performed in the simulator environment, it has been shown that this solution can well reduce the average delay time and power consumption.
|