On Generalized Nonexpansive Maps in Banach Spaces

We introduce a very general class of generalized non-expansive maps. This new class of maps properly includes the class of Suzuki non-expansive maps, Reich–Suzuki type non-expansive maps, and generalized <inline-formula> <math display="inline"> <semantics> <mi>α<...

Full description

Bibliographic Details
Main Authors: Kifayat Ullah, Junaid Ahmad, Manuel de la Sen
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Computation
Subjects:
Online Access:https://www.mdpi.com/2079-3197/8/3/61
id doaj-0f73eff0bd954a45a015272a031a934b
record_format Article
spelling doaj-0f73eff0bd954a45a015272a031a934b2020-11-25T03:06:48ZengMDPI AGComputation2079-31972020-07-018616110.3390/computation8030061On Generalized Nonexpansive Maps in Banach SpacesKifayat Ullah0Junaid Ahmad1Manuel de la Sen2Department of Mathematics, University of Science and Technology, Bannu 28100, Khyber Pakhtunkhwa, PakistanDepartment of Mathematics, University of Science and Technology, Bannu 28100, Khyber Pakhtunkhwa, PakistanInstitute of Research and Development of Processes, University of the Basque Country, Campus of Leioa (Bizkaia), P.O. Box 644- Bilbao, Barrio Sarriena, 48940 Leioa, SpainWe introduce a very general class of generalized non-expansive maps. This new class of maps properly includes the class of Suzuki non-expansive maps, Reich–Suzuki type non-expansive maps, and generalized <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-non-expansive maps. We establish some basic properties and demiclosed principle for this class of maps. After this, we establish existence and convergence results for this class of maps in the context of uniformly convex Banach spaces and compare several well known iterative algorithms.https://www.mdpi.com/2079-3197/8/3/61generalized non-expansive mapdemiclosed principleuniformly convex Banach spacerate of convergenceBanach space
collection DOAJ
language English
format Article
sources DOAJ
author Kifayat Ullah
Junaid Ahmad
Manuel de la Sen
spellingShingle Kifayat Ullah
Junaid Ahmad
Manuel de la Sen
On Generalized Nonexpansive Maps in Banach Spaces
Computation
generalized non-expansive map
demiclosed principle
uniformly convex Banach space
rate of convergence
Banach space
author_facet Kifayat Ullah
Junaid Ahmad
Manuel de la Sen
author_sort Kifayat Ullah
title On Generalized Nonexpansive Maps in Banach Spaces
title_short On Generalized Nonexpansive Maps in Banach Spaces
title_full On Generalized Nonexpansive Maps in Banach Spaces
title_fullStr On Generalized Nonexpansive Maps in Banach Spaces
title_full_unstemmed On Generalized Nonexpansive Maps in Banach Spaces
title_sort on generalized nonexpansive maps in banach spaces
publisher MDPI AG
series Computation
issn 2079-3197
publishDate 2020-07-01
description We introduce a very general class of generalized non-expansive maps. This new class of maps properly includes the class of Suzuki non-expansive maps, Reich–Suzuki type non-expansive maps, and generalized <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-non-expansive maps. We establish some basic properties and demiclosed principle for this class of maps. After this, we establish existence and convergence results for this class of maps in the context of uniformly convex Banach spaces and compare several well known iterative algorithms.
topic generalized non-expansive map
demiclosed principle
uniformly convex Banach space
rate of convergence
Banach space
url https://www.mdpi.com/2079-3197/8/3/61
work_keys_str_mv AT kifayatullah ongeneralizednonexpansivemapsinbanachspaces
AT junaidahmad ongeneralizednonexpansivemapsinbanachspaces
AT manueldelasen ongeneralizednonexpansivemapsinbanachspaces
_version_ 1724672259929407488