Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement.

Given the well-documented failings in mathematics education in many Western societies, there has been an increased interest in understanding the cognitive underpinnings of mathematical achievement. Recent research has proposed the existence of an Approximate Number System (ANS) which allows individu...

Full description

Bibliographic Details
Main Authors: Camilla Gilmore, Nina Attridge, Sarah Clayton, Lucy Cragg, Samantha Johnson, Neil Marlow, Victoria Simms, Matthew Inglis
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3681957?pdf=render
Description
Summary:Given the well-documented failings in mathematics education in many Western societies, there has been an increased interest in understanding the cognitive underpinnings of mathematical achievement. Recent research has proposed the existence of an Approximate Number System (ANS) which allows individuals to represent and manipulate non-verbal numerical information. Evidence has shown that performance on a measure of the ANS (a dot comparison task) is related to mathematics achievement, which has led researchers to suggest that the ANS plays a critical role in mathematics learning. Here we show that, rather than being driven by the nature of underlying numerical representations, this relationship may in fact be an artefact of the inhibitory control demands of some trials of the dot comparison task. This suggests that recent work basing mathematics assessments and interventions around dot comparison tasks may be inappropriate.
ISSN:1932-6203