A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay

We deal in this paper with the mild solution for the semilinear fractional differential equation of neutral type with infinite delay: Dαx(t)+Ax(t)=f(t,xt), t∈[0,T], x(t)=ϕ(t), t∈]−∞,0], with T>0 and 0<&#x03B1...

Full description

Bibliographic Details
Main Authors: Gisle M. Mophou, Gaston M. N'Guérékata
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Advances in Difference Equations
Online Access:http://dx.doi.org/10.1155/2010/674630
Description
Summary:We deal in this paper with the mild solution for the semilinear fractional differential equation of neutral type with infinite delay: Dαx(t)+Ax(t)=f(t,xt), t∈[0,T], x(t)=ϕ(t), t∈]−∞,0], with T>0 and 0<α<1. We prove the existence (and uniqueness) of solutions, assuming that −A is a linear closed operator which generates an analytic semigroup (T(t))t≥0 on a Banach space 𝕏 by means of the Banach's fixed point theorem. This generalizes some recent results.
ISSN:1687-1839
1687-1847