Effect of spatially correlated noise on stochastic synchronization in globally coupled FitzHugh-Nagumo neuron systems

The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN) neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA) and direct simulation (DS). Results from DMA are in good quantitative or qualitative...

Full description

Bibliographic Details
Main Authors: Yange Shao, Yanmei Kang
Format: Article
Language:English
Published: Elsevier 2014-01-01
Series:Theoretical and Applied Mechanics Letters
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095034915302889
Description
Summary:The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN) neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA) and direct simulation (DS). Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.
ISSN:2095-0349