Complexity and accuracy analysis of common artificial neural networks on pedestrian detection

With the development of computer version, deep learning and artificial neural networks approaches like SPP-net, Faster-RCNN and YOLO are proposed. This paper compares them in terms of efficiency and effectiveness. By analyzing the network architecture, SPP-net is more complex than Faster-RCNN and YO...

Full description

Bibliographic Details
Main Author: Wu Jiatu
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201823201003
Description
Summary:With the development of computer version, deep learning and artificial neural networks approaches like SPP-net, Faster-RCNN and YOLO are proposed. This paper compares them in terms of efficiency and effectiveness. By analyzing the network architecture, SPP-net is more complex than Faster-RCNN and YOLO. By analyzing the experiments, SPP-net and Faster-RCNN are more accurate than YOLO in static detection while opposite in real-time system. Therefore, in real-time pedestrian detection situation, YOLO can perform better. In static pedestrian detection situation, Faster-RCNN or SPP-net can perform better.
ISSN:2261-236X