Buckling Strength Assessment of Composite Patch Repair Used for the Rehabilitation of Corroded Marine Plates

A common form of damage encountered in marine structures is the accumulation of corrosion in susceptible areas, which leads to material wastage. As a result, the structural strength of the members affected is compromised, endangering their safe operation in design loads. Consequently, structural ins...

Full description

Bibliographic Details
Main Authors: Nikos Kallitsis, Konstantinos N. Anyfantis
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Applied Mechanics
Subjects:
Online Access:https://www.mdpi.com/2673-3161/2/3/27
Description
Summary:A common form of damage encountered in marine structures is the accumulation of corrosion in susceptible areas, which leads to material wastage. As a result, the structural strength of the members affected is compromised, endangering their safe operation in design loads. Consequently, structural instabilities may occur, such as buckling due to compressive or/and shear loads. An alternative repair practice for preventing such phenomena, approved for secondary load-carrying members, is the application of composite patches to the damaged area. In this preliminary study, this technique is examined in the scope of developing a framework that can be used to find the optimal solution for restoring the buckling strength of a corroded plate. The methods used to achieve this are based on finite element analysis (FEA) and design of experiments (DoE) to statistically analyze the aforementioned numerical calculations. By introducing the composite patch’s percentage coverage of its metal substrate and number of plies as design parameters, a response surface is generated with respect to the obtained factor of safety (regarding its reference uncorroded buckling strength). This list of data points is then evaluated, and an acceptable surface/list of design parameters’ combinations is generated.
ISSN:2673-3161