An Unbalanced Clock Based Dynamic Comparator: A High-Speed Low-Offset Design Approach for ADC Applications

Currently, dynamic comparator approach necessitates in high-speed and power efficient analog-to-digital converter applications due to its high latching speed and ultra-low power consumption. In this paper, a~novel dynamic comparator is proposed to reduce latch delay and offset. The comparator benefi...

Full description

Bibliographic Details
Main Authors: Vikrant Varshney, Rajendra Kumar Nagaria
Format: Article
Language:English
Published: VSB-Technical University of Ostrava 2019-01-01
Series:Advances in Electrical and Electronic Engineering
Subjects:
Online Access:http://advances.utc.sk/index.php/AEEE/article/view/3326
Description
Summary:Currently, dynamic comparator approach necessitates in high-speed and power efficient analog-to-digital converter applications due to its high latching speed and ultra-low power consumption. In this paper, a~novel dynamic comparator is proposed to reduce latch delay and offset. The comparator benefits from add-on cross-coupled transistors in latch structure and unbalanced clocks to enhance comparison speed and to lessen input offset voltage occurred due to mismatch in cross-coupled circuits in latch stage. The derivations for delay and input offset voltage are presented for proposed dynamic comparator with meticulous Monte-Carlo simulations. The results are verified by simulations in CADENCE SPECTRE at 1V supply voltage and 90nm CMOS technology. A~comparative analysis between the proposed dynamic comparator and the previous reported comparators has been presented. It is observed that the delay is reduced up to 46% and 6% as compared to conventional and two phase dynamic comparator, respectively. Moreover, the proposed design consumes 53.36muW power only. The Monte-Carlo simulation shows that the standard deviation of input offset voltage is 10.8~mV which is 12% and 77% of conventional and two phase dynamic comparator, respectively.
ISSN:1336-1376
1804-3119