Numerical Methods for a Class of Differential Algebraic Equations
This paper is devoted to the study of some efficient numerical methods for the differential algebraic equations (DAEs). At first, we propose a finite algorithm to compute the Drazin inverse of the time varying DAEs. Numerical experiments are presented by Drazin inverse and Radau IIA method, which il...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2017/1871590 |
Summary: | This paper is devoted to the study of some efficient numerical methods for the differential algebraic equations (DAEs). At first, we propose a finite algorithm to compute the Drazin inverse of the time varying DAEs. Numerical experiments are presented by Drazin inverse and Radau IIA method, which illustrate that the precision of the Drazin inverse method is higher than the Radau IIA method. Then, Drazin inverse, Radau IIA, and Padé approximation are applied to the constant coefficient DAEs, respectively. Numerical results demonstrate that the Padé approximation is powerful for solving constant coefficient DAEs. |
---|---|
ISSN: | 1024-123X 1563-5147 |