Perturbed Iterative Algorithms for Generalized Nonlinear Set-Valued Quasivariational Inclusions Involving Generalized <inline-formula><graphic file="1029-242X-2007-029863-i1.gif"/></inline-formula>-Accretive Mappings

<p/> <p>A new class of generalized nonlinear set-valued quasivariational inclusions involving generalized <inline-formula><graphic file="1029-242X-2007-029863-i2.gif"/></inline-formula>-accretive mappings in Banach spaces are studied, which included many varia...

Full description

Bibliographic Details
Main Author: Jin Mao-Ming
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2007/029863
id doaj-0f06c64d48d04e7a8970023d8c2ed06d
record_format Article
spelling doaj-0f06c64d48d04e7a8970023d8c2ed06d2020-11-25T02:51:26ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2007-01-0120071029863Perturbed Iterative Algorithms for Generalized Nonlinear Set-Valued Quasivariational Inclusions Involving Generalized <inline-formula><graphic file="1029-242X-2007-029863-i1.gif"/></inline-formula>-Accretive MappingsJin Mao-Ming<p/> <p>A new class of generalized nonlinear set-valued quasivariational inclusions involving generalized <inline-formula><graphic file="1029-242X-2007-029863-i2.gif"/></inline-formula>-accretive mappings in Banach spaces are studied, which included many variational inclusions studied by others in recent years. By using the properties of the resolvent operator associated with generalized <inline-formula><graphic file="1029-242X-2007-029863-i3.gif"/></inline-formula>-accretive mappings, we established the equivalence between the generalized nonlinear set-valued quasi-variational inclusions and the fixed point problems, and some new perturbed iterative algorithms, proved that its proximate solution converges strongly to its exact solution in real Banach spaces.</p>http://www.journalofinequalitiesandapplications.com/content/2007/029863
collection DOAJ
language English
format Article
sources DOAJ
author Jin Mao-Ming
spellingShingle Jin Mao-Ming
Perturbed Iterative Algorithms for Generalized Nonlinear Set-Valued Quasivariational Inclusions Involving Generalized <inline-formula><graphic file="1029-242X-2007-029863-i1.gif"/></inline-formula>-Accretive Mappings
Journal of Inequalities and Applications
author_facet Jin Mao-Ming
author_sort Jin Mao-Ming
title Perturbed Iterative Algorithms for Generalized Nonlinear Set-Valued Quasivariational Inclusions Involving Generalized <inline-formula><graphic file="1029-242X-2007-029863-i1.gif"/></inline-formula>-Accretive Mappings
title_short Perturbed Iterative Algorithms for Generalized Nonlinear Set-Valued Quasivariational Inclusions Involving Generalized <inline-formula><graphic file="1029-242X-2007-029863-i1.gif"/></inline-formula>-Accretive Mappings
title_full Perturbed Iterative Algorithms for Generalized Nonlinear Set-Valued Quasivariational Inclusions Involving Generalized <inline-formula><graphic file="1029-242X-2007-029863-i1.gif"/></inline-formula>-Accretive Mappings
title_fullStr Perturbed Iterative Algorithms for Generalized Nonlinear Set-Valued Quasivariational Inclusions Involving Generalized <inline-formula><graphic file="1029-242X-2007-029863-i1.gif"/></inline-formula>-Accretive Mappings
title_full_unstemmed Perturbed Iterative Algorithms for Generalized Nonlinear Set-Valued Quasivariational Inclusions Involving Generalized <inline-formula><graphic file="1029-242X-2007-029863-i1.gif"/></inline-formula>-Accretive Mappings
title_sort perturbed iterative algorithms for generalized nonlinear set-valued quasivariational inclusions involving generalized <inline-formula><graphic file="1029-242x-2007-029863-i1.gif"/></inline-formula>-accretive mappings
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2007-01-01
description <p/> <p>A new class of generalized nonlinear set-valued quasivariational inclusions involving generalized <inline-formula><graphic file="1029-242X-2007-029863-i2.gif"/></inline-formula>-accretive mappings in Banach spaces are studied, which included many variational inclusions studied by others in recent years. By using the properties of the resolvent operator associated with generalized <inline-formula><graphic file="1029-242X-2007-029863-i3.gif"/></inline-formula>-accretive mappings, we established the equivalence between the generalized nonlinear set-valued quasi-variational inclusions and the fixed point problems, and some new perturbed iterative algorithms, proved that its proximate solution converges strongly to its exact solution in real Banach spaces.</p>
url http://www.journalofinequalitiesandapplications.com/content/2007/029863
work_keys_str_mv AT jinmaoming perturbediterativealgorithmsforgeneralizednonlinearsetvaluedquasivariationalinclusionsinvolvinggeneralizedinlineformulagraphicfile1029242x2007029863i1gifinlineformulaaccretivemappings
_version_ 1724734534249873408