A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015

<p>Glacier mass balance (MB) data are crucial to understanding and quantifying the regional effects of climate on glaciers and the high-mountain water cycle, yet observations cover only a small fraction of glaciers in the world. We present a dataset of annual glacier-wide mass balance of all t...

Full description

Bibliographic Details
Main Authors: J. Bolibar, A. Rabatel, I. Gouttevin, C. Galiez
Format: Article
Language:English
Published: Copernicus Publications 2020-09-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/12/1973/2020/essd-12-1973-2020.pdf
id doaj-0ef4e62ac94c43ceaeeb45e04f724d7b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author J. Bolibar
J. Bolibar
A. Rabatel
I. Gouttevin
C. Galiez
spellingShingle J. Bolibar
J. Bolibar
A. Rabatel
I. Gouttevin
C. Galiez
A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
Earth System Science Data
author_facet J. Bolibar
J. Bolibar
A. Rabatel
I. Gouttevin
C. Galiez
author_sort J. Bolibar
title A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
title_short A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
title_full A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
title_fullStr A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
title_full_unstemmed A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
title_sort deep learning reconstruction of mass balance series for all glaciers in the french alps: 1967–2015
publisher Copernicus Publications
series Earth System Science Data
issn 1866-3508
1866-3516
publishDate 2020-09-01
description <p>Glacier mass balance (MB) data are crucial to understanding and quantifying the regional effects of climate on glaciers and the high-mountain water cycle, yet observations cover only a small fraction of glaciers in the world. We present a dataset of annual glacier-wide mass balance of all the glaciers in the French Alps for the 1967–2015 period. This dataset has been reconstructed using deep learning (i.e. a deep artificial neural network) based on direct MB observations and remote-sensing annual estimates, meteorological reanalyses and topographical data from glacier inventories. The method's validity was assessed previously through an extensive cross-validation against a dataset of 32 glaciers, with an estimated average error (RMSE) of 0.55&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="11a39eed12cc43bd042b7c6ff52fbf8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00001.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00001.png"/></svg:svg></span></span>, an explained variance (<span class="inline-formula"><i>r</i><sup>2</sup></span>) of 75&thinsp;% and an average bias of <span class="inline-formula">−0.021</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="1229264da99210480fe6fe0c014f08dc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00002.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00002.png"/></svg:svg></span></span>. We estimate an average regional area-weighted glacier-wide MB of <span class="inline-formula">−0.69</span><span class="inline-formula">±</span>0.21 (1<span class="inline-formula"><i>σ</i></span>)&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="38c7ed2845b2ac6949b4d2ac7360cf0e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00003.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00003.png"/></svg:svg></span></span> for the 1967–2015 period with negative mass balances in the 1970s (<span class="inline-formula">−0.44</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="1b8e74d2586fe2cece3ef01f194d2b4d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00004.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00004.png"/></svg:svg></span></span>), moderately negative in the 1980s (<span class="inline-formula">−0.16</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="95942ab676b01b8d7c87e30889e73273"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00005.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00005.png"/></svg:svg></span></span>) and an increasing negative trend from the 1990s onwards, up to <span class="inline-formula">−1.26</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="128ea6924615ac3e42cea2b6c9659a75"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00006.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00006.png"/></svg:svg></span></span> in the 2010s. Following a topographical and regional analysis, we estimate that the massifs with the highest mass losses for the 1967–2015 period are the Chablais (<span class="inline-formula">−0.93</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="b9db93df1dcea70fe016d2815062ab83"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00007.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00007.png"/></svg:svg></span></span>), Champsaur (<span class="inline-formula">−0.86</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="e9f580d8aa897f340b637c81feb72e0a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00008.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00008.png"/></svg:svg></span></span>), and Haute-Maurienne and Ubaye ranges (<span class="inline-formula">−0.84</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="020b277a95eece962586b3549238e683"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00009.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00009.png"/></svg:svg></span></span> each), and the ones presenting the lowest mass losses are the Mont-Blanc (<span class="inline-formula">−0.68</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="5f37048e66695ea6e950532225bb3500"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00010.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00010.png"/></svg:svg></span></span>), Oisans and Haute-Tarentaise ranges (<span class="inline-formula">−0.75</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="c9a9bf02b777c0213ae832d6e668e670"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00011.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00011.png"/></svg:svg></span></span> each). This dataset – available at <a href="https://doi.org/10.5281/zenodo.3925378">https://doi.org/10.5281/zenodo.3925378</a> <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx5">Bolibar et al.</a>, <a href="#bib1.bibx5">2020</a><a href="#bib1.bibx5">a</a>)</span> – provides relevant and timely data for studies in the fields of glaciology, hydrology and ecology in the French Alps in need of regional or glacier-specific annual net glacier mass changes in glacierized catchments.</p>
url https://essd.copernicus.org/articles/12/1973/2020/essd-12-1973-2020.pdf
work_keys_str_mv AT jbolibar adeeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
AT jbolibar adeeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
AT arabatel adeeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
AT igouttevin adeeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
AT cgaliez adeeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
AT jbolibar deeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
AT jbolibar deeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
AT arabatel deeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
AT igouttevin deeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
AT cgaliez deeplearningreconstructionofmassbalanceseriesforallglaciersinthefrenchalps19672015
_version_ 1724630461617012736
spelling doaj-0ef4e62ac94c43ceaeeb45e04f724d7b2020-11-25T03:17:43ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162020-09-01121973198310.5194/essd-12-1973-2020A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015J. Bolibar0J. Bolibar1A. Rabatel2I. Gouttevin3C. Galiez4Univ. Grenoble Alpes, CNRS, IRD, G-INP, Institut des Géosciences de l'Environnement (IGE, UMR 5001), Grenoble, FranceINRAE, UR RiverLy, Lyon-Villeurbanne, FranceUniv. Grenoble Alpes, CNRS, IRD, G-INP, Institut des Géosciences de l'Environnement (IGE, UMR 5001), Grenoble, FranceUniv. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Études de la Neige, Grenoble, FranceUniv. Grenoble Alpes, CNRS, G-INP, LJK, Grenoble, France<p>Glacier mass balance (MB) data are crucial to understanding and quantifying the regional effects of climate on glaciers and the high-mountain water cycle, yet observations cover only a small fraction of glaciers in the world. We present a dataset of annual glacier-wide mass balance of all the glaciers in the French Alps for the 1967–2015 period. This dataset has been reconstructed using deep learning (i.e. a deep artificial neural network) based on direct MB observations and remote-sensing annual estimates, meteorological reanalyses and topographical data from glacier inventories. The method's validity was assessed previously through an extensive cross-validation against a dataset of 32 glaciers, with an estimated average error (RMSE) of 0.55&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="11a39eed12cc43bd042b7c6ff52fbf8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00001.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00001.png"/></svg:svg></span></span>, an explained variance (<span class="inline-formula"><i>r</i><sup>2</sup></span>) of 75&thinsp;% and an average bias of <span class="inline-formula">−0.021</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="1229264da99210480fe6fe0c014f08dc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00002.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00002.png"/></svg:svg></span></span>. We estimate an average regional area-weighted glacier-wide MB of <span class="inline-formula">−0.69</span><span class="inline-formula">±</span>0.21 (1<span class="inline-formula"><i>σ</i></span>)&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="38c7ed2845b2ac6949b4d2ac7360cf0e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00003.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00003.png"/></svg:svg></span></span> for the 1967–2015 period with negative mass balances in the 1970s (<span class="inline-formula">−0.44</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="1b8e74d2586fe2cece3ef01f194d2b4d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00004.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00004.png"/></svg:svg></span></span>), moderately negative in the 1980s (<span class="inline-formula">−0.16</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="95942ab676b01b8d7c87e30889e73273"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00005.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00005.png"/></svg:svg></span></span>) and an increasing negative trend from the 1990s onwards, up to <span class="inline-formula">−1.26</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="128ea6924615ac3e42cea2b6c9659a75"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00006.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00006.png"/></svg:svg></span></span> in the 2010s. Following a topographical and regional analysis, we estimate that the massifs with the highest mass losses for the 1967–2015 period are the Chablais (<span class="inline-formula">−0.93</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="b9db93df1dcea70fe016d2815062ab83"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00007.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00007.png"/></svg:svg></span></span>), Champsaur (<span class="inline-formula">−0.86</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="e9f580d8aa897f340b637c81feb72e0a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00008.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00008.png"/></svg:svg></span></span>), and Haute-Maurienne and Ubaye ranges (<span class="inline-formula">−0.84</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="020b277a95eece962586b3549238e683"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00009.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00009.png"/></svg:svg></span></span> each), and the ones presenting the lowest mass losses are the Mont-Blanc (<span class="inline-formula">−0.68</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="5f37048e66695ea6e950532225bb3500"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00010.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00010.png"/></svg:svg></span></span>), Oisans and Haute-Tarentaise ranges (<span class="inline-formula">−0.75</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">w</mi><mo>.</mo><mi mathvariant="normal">e</mi><mo>.</mo><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="c9a9bf02b777c0213ae832d6e668e670"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-12-1973-2020-ie00011.svg" width="49pt" height="13pt" src="essd-12-1973-2020-ie00011.png"/></svg:svg></span></span> each). This dataset – available at <a href="https://doi.org/10.5281/zenodo.3925378">https://doi.org/10.5281/zenodo.3925378</a> <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx5">Bolibar et al.</a>, <a href="#bib1.bibx5">2020</a><a href="#bib1.bibx5">a</a>)</span> – provides relevant and timely data for studies in the fields of glaciology, hydrology and ecology in the French Alps in need of regional or glacier-specific annual net glacier mass changes in glacierized catchments.</p>https://essd.copernicus.org/articles/12/1973/2020/essd-12-1973-2020.pdf